DRIP IRRIGATION WORKSHOP

Course Agenda

\square Review of Hydraulics
\square Determining Pressure \& Friction Loss
\square Overview of Drip Product and Terminology
\square Drip versus Sprinkler Operation and Performance
\square Defining "Efficiency" in Regards to Drip

Course Agenda (cont.)

\square Product Application and Specification
\square Design Approach for Landscape Drip
\square Practice Design
\square product selection
\square water balance and scheduling
\square Clogging Detection and Control
\square Soil Moisture Measurement

REAL HYDRAULIC PROBLEMS

REAL HYDRAULIC PROBLEMS

Grand Canyon

What is Hydraulics?

\square Hydraulics is a branch of science that deals with the effects of water or other liquids in motion.
\square Places emphasis on the relationship between:
\square FLOW
\square VELOCITY
\square PRESSURE.

Irrigation Hydraulics

\square Is the study of waters behavior at rest (pressure) and in motion (flow)
\square Irrigation Hydraulics affect:
\square Sprinkler \& Drip Emitter Performance
\square Water Application Uniformity

- Irrigation System Cost

Pressure

\square The BIGGEST variable in irrigation systems
\square Determines how well sprinklers and drip components perform

ALL manufacturers publish recommended operating pressures for their products

Types of Pressure

\square Dynamic Pressure
\square Pressure at a point when water is moving
\square Also referred to as "operating pressure"
\square Static Pressure
\square Pressure at a point when there is no water moving

Determining Pressure

\square Pressure Gauges (either Static or Dynamic)

How is pressure created?

\square Weight of the Water (Gravity)
\square Mechanical Means (Pump)

How do we measure pressure?

\square PSI
\square Pounds Per Square Inch
\square Feet of Head
\square Height of Water in a column

Column of Water

Relationship between PSI \& Feet of Head
$\square 1$ PSI $=2.31$ Feet of Head $\square 1$ Foot of Head $=.433$ PSI

Water Pressure from 1 Foot of Water

- 1 Foot of head = 0.433 psi

Feet of Head from 1 psi

1 psi = 2.31 ft . of head

Static Pressure and Elevation

A50 psi B

- A and B are at same elevation: static pressure at $B=A$
- C is lower in elevation than B: static pressure at C is higher that at B
- D is at higher elevation than C : static pressure at D is lower than at C

Water Movement in the System

- Flow: amount (volume) of water moving per unit of time. Measured in:
- Gallons per minute (gpm)
- Gallons per hour (gph)
- Velocity: speed of moving water. Measured in:
- Feet per second (fps)
- Flow in a system is dependent upon the number of sprinklers or drip emitters working at the same time
- Flow in various pipe segments of an irrigation system can be different
- Flow is commonly measured in gpm for sprinkler systems and in gph for drip irrigation systems

Flow for a Basic Drip System

Introduction to Friction Loss

 (Pressure Loss)

Flow
(4) A

Pipe

- When water is not moving there is no friction loss - this is static pressure
- When water is moving there is some loss of pressure due to friction.

What Affects Friction Loss?

- Velocity (flow)
- Inside diameter of pipe (ID)
- Roughness of material
- Length of pipe

Classifications of Pipe (PVC)

\square Schedule Pipe
\square Pipe wall thickness is fairly constant for all diameters
\square Pressure Rating Decreases as Diameter Increases
\square Class/SDR Pipe
\square Has a constant pressure rating per class for all diameters of pipe
\square Wall thickness changes with pipe diameter

Velocity (flow)

8 gpm - 1-in. Sch 40 PVC

Velocity $2.9 \overline{7}$ fp

Pressure Loss $=1.59 \mathrm{psi} / 100 \mathrm{ft}$. of pipe
18 gpm - 1 -in. Sch 40 PVC

Velocity 6.67 fp

Pressure Loss $=7.12 \mathbf{p s i} / 100 \mathrm{ft}$. of pipe

Inside Diameter

15 gpm - 2-in. (2.067 in. Inside Diameter) Sch 40 PVC

15 gpm - 1-in. (1.049 in. Inside Diameter) Sch 40 PVC

Pressure Loss $=5.08 \mathrm{psi} / 100 \mathrm{ft}$. of pipe

Roughness

10 gpm - 1-in. Sch 40 PVC (Roughness C=150)

10 gpm - 1 -in. Sch 40 Standard Steel Pipe (Roughness C=100)

Length

10 gpm - 1 -in. Sch 40 PVC 100 feet of pipe

10 gpm - 1 -in. Sch 40 PVC
200 feet of pipe

Pressure Loss $=\mathbf{4 . 8 0}$ psi total

How to Find Friction Losses

- Use Formula
- Hazen-Williams
- Darcy-Weisbach
- Manning (mainly used for open channel flow)
- Others
- Use Tables
- Generally calculated using Hazen-Williams formula

Friction Loss Table

- A, B = Type of pipe
-F = Pressure loss/ 100 ft . of pipe
-G $=$ Nominal size of pipe
- H-J = Actual sizes of pipe
-K = Flow quantities, gpm
OL = Velocity in fps
- M = PSI loss/ 100 ft . of pipe

To Use Friction Loss Tables:

- Find proper page for pipe material and type. Note all tables are for 100-ft. pipe length.
- Find the flow (gpm)
- Find the size of pipe
- Find the psi loss corresponding to pipe size under psi loss column
- Find the corresponding row for flow

Example: Friction Loss Calculation Using the

 TablesFind the friction loss in:

- 100 ft. length of Class 200 PVC pipe

Flow is 6 gpm.
Nominal pipe size is $3 / 4 \mathrm{in}$. diameter

Example: Solution

\bullet Use Class 200 PVC table
\bullet Length of pipe is 100 ft .

Step 1: Find 6 gpm in first column

Step 2: Find $3 / 4$ in. pipe diameter column

Step 3: Read 1.67 psi loss per 100 ft . of pipe

Friction Loss Characteristics
Class 200 IPS PVC Plastic Pipe (1120, 1220) SDR $21 \quad C=150 \quad 3 / 4 "$ through $5^{\prime \prime}$

Pressure Loss per 100

Introduction to Dynamic Pressure

- Pressure when water is moving
- Uniformity of the irrigation system is dependent upon the correct dynamic pressure

Factors Affecting Dynamic Pressure

- Change in elevation
- Same as in static pressure
- Friction loss in various components
- Loss of pressure as water flows in pipes and other irrigation components
- Others factors
- velocity head and entrance losses (not covered in this presentation)

Dynamic Pressure Calculation

- When calculating dynamic pressure, consider:
- Pressure at the water source
- Changes in elevation
- Friction losses in irrigation system components

Friction Losses for Pipe Fittings

- Separate tables are available for friction losses in fittings
- Sometimes a certain percentage (10% - 20%) of pipe friction loss is used to account for fittings friction losses

Friction Losses for Other System

Components

- See tables and charts in manufacturer's catalogs for other components such as valves, filters etc.
- Use a water meter table for finding friction loss through the water meter (if there is one in your system)

Typical Pressures and Flows for Sprinkler Irrigation

Sprinkler Type	Radius of Throw	Pressure Ranges	Flow Ranges
Spray	5 to 16 ft.	15 to 30 psi	Up to 4 gpm
Small Rotors	15 to 30 ft.	25 to 55 psi	Up to 6 gpm
Medium Rotors	30 to 50 ft	25 to 65 psi	Up to 10 gpm
Large Rotors	$50 \mathrm{ft}+$.	50 to 120 psi	10 to $40+\mathrm{gpm}$
Guns	$100 \mathrm{ft}+$.	$100 \mathrm{psi}+$	$80 \mathrm{gpm}+$

Typical Pressures and Flows for Drip Irrigation

Drip Type	Pressure Ranges	Flow Ranges
On-line Drip Emitters	10 to 50 psi	0.5 to 24 gph
Inline Drip Emitters	10 to 50 psi	0.4 to 0.9 gph
Mini sprays/ Spitters	10 to 50 psi	0 to 30 gph
Drip Tape	8 to 20 psi	10 to 60 gph per $100 \mathrm{ft} of$. tape

Irrigation Hydraulics Summary

- Static pressure is affected by:
- Elevation only
- Dynamic pressure is affected by:
- Elevation
- Friction losses in pipe
- Friction losses in fittings
- Friction losses in all other components

Summary (cont.)

- Irrigation hydraulics:
- Determines pressure available at the emission device
- Determines flow in the pipe
- Helps design efficient, economical systems

Irrigation Pipe Sizing

- Balance between excessive cost and excessive velocity or pressure loss
- Friction Factor Method
- Lateral Lines
- Maintains Pressure Uniformity
- Velocity Limit Method
- Mainlines
- Reduces Potential For Water Hammer

Irrigation Pipe Sizing

\square Before pipe can be sized, you must:
\square Determine Design Capacity and Available Pressure
\square Select and Place Sprinklers/Drip Product on Plan
\square Divide plan into zones so total flow does not exceed design capacity
\square Select valves and other devices
\square Determine Length of Mainlines and Laterals

Velocity Limit Pipe Sizing Maximum PVC Mainline Flow Rates*

Pipe Size and Type

Maximum Flow Rate

 At $5 \mathrm{ft} / \mathrm{s}$1/2" Schedule 40 PVC 4.7 gpm
3/4" Schedule 40 PVC 8.3 gpm
1" Schedule 40 PVC 13.5 gpm
1-1/4" Schedule 40 PVC 23.4 gpm
1-1/2" Schedule 40 PVC 31.8 gpm
2" Class 315 PVC 50.2 gpm
2-1/2" Class 315 PVC 73.5 gpm
3" Class 315 PVC 109 gpm
-If other pipe types are used, maximum flow rates determined by appropriate velocity for pipe type.

Excessive Friction (Pressure) Loss

\square Results in Decreased Uniformity and Precipitation Rate

Drip Irrigation

\square Application of water at very low flow rates Also referred to as "low volume" and "low flow" irrigation
\square Sometimes referred to as "Micro Irrigation"

Drip Irrigation

\square Irrigation water is applied through emitters either above or below the soil surface
\square Precipitation rates vary with length, pressure and flow.

Drip Irrigation (cont.)

\square Long history in agricultural applications

- Promoted as an "efficient" alternative to sprinkler irrigation
\square In truth:
"Only as efficient as the person behind the design and management"

State Irrigation Regulations

$\square \S 344.62$.Minimum Design and Installation Requirements.
"New irrigation systems shall not utilize aboveground spray emission devices in landscapes that are less than 48 inches not including the impervious surfaces in either length or width and which contain impervious pedestrian or vehicular traffic surfaces along two or more perimeters. "

48 Inch Rule, 5ft Rule

\square Example: the landscape between roads and sidewalks

Types of Drip Products

\square Three Main types of Drip:
\square Tape
\square Tubing with Embedded Emitters
\square Poly pipe with emitter inserts

Drip Products - Drip Tape

\square Thin Wall Flat Drip Tape
\square Contains embedded emitters
\square Operates Under Low Pressure Conditions
\square Popular in vegetable production

Drip Products - Drip Tubing With Embedded Emitters

\square Durable Thick Wall Tubing
\square Usually contain pressure compensating embedded emitters
\square Can operate under higher pressures

Drip Products - Drip Tubing with Inserted Emitters

\square Uses hard hose PE tubing
\square Allows for precision application of water
\square Flexible Precipitation Rates, based on emitter
\square Used for Shrubs and Trees

Terminology

ם "On-line" emitters - emitters attached to the outside of the supply tubing with a barbed inlet projecting into the tube.
\square Usually installed on-site to customize for various planting layouts

On Line Emitters

Terminology (cont.)

口 "In-line" emitter - emitter is imbedded inside drip tubing or tape
\square Installed at uniform intervals during the manufacturing process

In-Line Emitter

Terminology (cont.)

- "Pressure compensating emitters" - flow remains constant with varying inlet pressures
\square Disc or rubber diaphragm located inside the emitter closes slightly as pressure increases ... reducing the cross sectional area, thus reducing flow

Flexible Diaphragm

Pressure Compensating Emitter

Terminology (cont.)

- "Non-pressure compensating emitters" flow rate increase with increasing inlet pressures
\square Usually constructed entirely of plastic with no moving parts

Terminology (cont.)

- "Laminar flow" - water travels through a long, smooth, spiral flow path through the emitter

Spiral Path

Long - spiral - path Emitter

Terminology (cont.)

- "Tortuous" or "Turbulent" flow - water travels through a maze of pathways before reaching the outlet
\square Requires less filtration than laminar flow

Tortuous Flow Emitter

Terminology (cont.)

- "Self-flushing" - water travels through the emitter at high velocity during start-up to remove debri
\square Should not be regarded as a substitute for a filtration device
\square Newer designs have flexible emitters that self-flush when plugged

Twin - Chamber Tubing

Components of Drip Systems

\square Manual or Remote Valve
\square Drip Products
\square Pressure Regulators
\square Backflow Prevention Devices
\square Screens \& Filters
\square Flushing Valves

Backflow Prevention Assembly Devices

\square Safety device which prevents the flow of water from the irrigation system back to the water source,
$\square 4$ Main Types of Backflow Devices
\square Atmospheric Vacuum Breaker - AVB

- Double Check Assembly - DC
\square Pressure Vacuum Breaker - PVB
\square Reduced Pressure Principle Assembly - RPZ

Backflow Devices

\square PVB

\square DC

\square RPZ

Pressure Regulators

\square Some systems require pressure regulators to achieve manufacturers recommended pressure requirement
\square Some devices have pressure regulators built in

Screens \& Filters

\square Used to catch plastic and sediment in the irrigation water
\square Prevent clogging of emitters and valves.

Screens \& Filters

\square Screen filters are used for drip systems connected to municipal water sources and other "clean" water sources
\square Sand media filters or disc filters may be required for drip systems connected to surface water (rivers, lakes, ponds, etc.)

Filters

\square Drip irrigation systems MUST include a filter
\square With groundwater, a screen (mesh) filter is normally satisfactory
\square Choose the mesh size of the filter using manufacturer's recommendation for the exact product being used

Flushing Valves

\square When sediment becomes trapped in the drip product, a flushing valve is used to remove it
\square Flushing valves can be automatic or manual.

Operational Indicators

\square Flags
\square Misters
\square Indicators
\square Capped Spray Body
\square Can be used a visual indicators that a drip system is operating

Valve \& Valve Kits

\square Select valves that can operate at very low flow rates
\square 0.2-0.5 minimum available
\square Manufacturers sell drip valve kits that combine low flow valves with filters and pressure regulators

Special Equipment Needs

\square Controllers
\square Long timing capabilities (0-9.9 hours)
\square Cycle/Soak (Stacked timing availability)
\square Calendar options (for specific days of the week)
\square Remote sensor circuit (for use with moisture sensors)

Special Equipment Needs (cont.)

\square Solenoid Valves
\square Must open and close at low flow rates
\square Filtration Device
\square Screen, disk, wye
\square Mesh size depends on water quality and emitter characteristics

Special Equipment Needs (cont.)

\square Pressure Regulation Device
\square Placed on the discharge side of the filtration device

- Placement in respect to the solenoid valve should follow valve manufacturer's specifications

Special Equipment Needs (cont.)

\square Pressure Gage
\square detects emitter clogging
\square detects leaks in connections and lateral tubing
\square Flow Meter
\square detects emitter clogging
\square detects leaks in connections and lateral tubing

Special Equipment Needs (cont.)

\square Soil Moisture Sensors
\square useful for maintaining optimum moisture levels and irrigation scheduling (especially when used with subsurface installations)

Advantages of Drip

Advantages

\square Low Evaporation Loss
\square Water is being applied at the soil surface, not in the air
\square No wind drift loss
\square Low runoff potential

Advantages

\square Precise soil moisture control
\square Apply water directly to the soil and/or root zone

\square Requires less water pressure

Advantages (cont.)

\square Smaller pipe size requirements
\square Reduced weed growth when used with a mulch
\square Reduced liability due to water on hardscapes
\square Improved performance for plants on steep slopes

Benefits of Drip

\square Allows for areas to be irrigated more efficiently that couldn't before
\square Slopes
\square Thin areas
\square Low flow rate allows for larger areas to be irrigated at the same time.
\square Ability to irrigate when the site may be in use

Disadvantages

\square Requires constant monitoring and maintenance
\square May be cost prohibitive for large landscape areas (I.e., turfgrass)
\square Applies a limited supply of water into the root zone
\square May require long runtimes

Disadvantages (cont.)

\square Requires filtration and pressure regulation
\square Surface tape and tubing are more susceptible to pests and vandalism
\square Rodents and Gophers like to chew on buried products
\square Subsurface installations may reduce customer confidence
\square Typically cant see it operating, owners want to see what they paid for

Product Selection

Understanding Manufacturers Literature

Drip Products

\square Options:
\square Wall thickness
\square Diameter
-Emitter spacing
-Flow rates

Drip Installation

\square Installation can be done by hand or tractor
\square Numerous drip guides on the web

Drip Selection

\square Use products from major manufacturers if possible
\square Thinner material (wall thickness) and smaller diameters are less expensive
\square Thicker products are more durable
\square For drip under plastic mulch, the thinner products are typically used

Drip Specification Charts

Charts typically give the following for each drip tape product:
\square diameter (inch, mm)
\square in-let pressure

- flow rate

Drip Specification Charts

\square In-let pressures are listed usually as a range from the minimum to the maximum for each tape product (psi, bar)
\square Flow rates are usually given as:
\square GPH/100' (gallons per hour per 100 ft of tape) or
\square GPH per emitter

Maximum Length of Run

$\square \mathrm{EU}$ (emission uniformity) is a measurement of how evenly water is distributed along the tape
\square the longer tape is run, the lower the EU
\square Due to friction loss in the product
\square If possible, use row lengths that maintain 90\% EU

Maximum Length of Run

\square The maximum distance that the drip tape can be run varies according to
\square diameter
\square in-let pressure

- flow rate
\square slope (\%)

Rainbird Example

Inlet Pressure psi	XF Dripline Maximum Lateral Lengths (Feet)					
	12"Spacing		18" Spacing		24" Spacing	
	Nominal Flow (GPH)		Nominal Flow (GPH)		Nominal Flow (GPH)	
	0.6	0.9	0.6	0.9	0.6	0.9
15	255	194	357	273	448	343
20	291	220	408	313	514	394
30	350	266	494	378	622	478
40	396	302	560	428	705	541
50	434	333	614	470	775	594

XF-SDI Dripline Flow (per 100 feet)
Emitter Spacing 0.6 GPH Emitter 0.9 GPH Emitter

$12^{\prime \prime}$	61.0 GPH	1.02 GPM	92.0 GPH	1.53 GPM
$18^{\prime \prime}$	41.0 GPH	0.68 GPM	61.0 GPH	1.02 GPM
$24^{\prime \prime}$	31.0 GPH	0.51 GPM	46.0 GPH	0.77 GPM

Rainbird Example

OPERATING RANGE

- Pressure: 8.5 to 60 psi (,58 to 4,14 bar)
- Flow rates: 0.6 and 0.9 gph
(2,3 l/hr and 3,5 I/hr)
- Temperature:

Water: Up to $100^{\circ} \mathrm{F}\left(37,8^{\circ} \mathrm{C}\right)$
Ambient: Up to $125^{\circ} \mathrm{F}\left(51,7^{\circ} \mathrm{C}\right)$

- Required Filtration: 120 mesh

Netafim Example: Techline CV

Maximum Length of a Single Lateral (feet)

Flow per 100 Feet

Dripper - Spacing	O.26 Dripper			O.4 Dripper		O.6 Dripper		O.9 Dripper	
	GPH	GPM	GPH	GPM	GPH	GPM	GPH	GPM	
$\mathbf{1 2 \prime \prime}$	26.40	0.44	40.00	0.67	61.00	1.02	92.00	1.53	
$\mathbf{1 8 \prime \prime}$	17.58	0.29	26.67	0.44	41.00	0.68	61.00	1.02	
$\mathbf{2 4 \prime \prime}$	Not Available		Not Available		31.00	0.51	46.00	0.77	

Netafim Example: Techline CV

SPECIFICATIONS

- Broadest choice of dripper flow rates: $0.26,0.4,0.6$ and 0.9 GPH
- Dripper spacings: 12", 18" and $24^{\prime \prime}$ (24" spacing available for 0.6 and 0.9 GPH only)
- Pressure compensation range: 14.7 to 70 psi (stainless steel clamps recommended above 50 psi)
- Bending radius: 7"
- Maximum recommended system pressure: 50 psi
- Minimum pressure required: 14.7 psi
- Tubing diameter: $0.66^{\prime \prime}$ OD; $0.56^{\prime \prime}$ ID; $0.050^{\prime \prime}$ wall
- Coil length: $100^{\prime}, 250^{\prime}, 1,000^{\prime}$
- Recommended minimum filtration: 120 mesh

Toro Example: DL2000 Series

$5 / 8^{\prime \prime}$ (.0620" ID X 0.710" OD			Inlet Pressure VS Maximum Length of Run In Feet			
Part No.	Flow Rate (GPH)	Emitter Spacing	15 psi	25 psi	30 psi	40 psi
RGP-212	.53	$12^{\prime \prime}$	250^{\prime}	360^{\prime}	400^{\prime}	460^{\prime}
RGP-218	.53	$18^{\prime \prime}$	350^{\prime}	515^{\prime}	565^{\prime}	650^{\prime}
RGP-412	1.0	$12^{\prime \prime}$	160^{\prime}	240^{\prime}	260^{\prime}	300^{\prime}
RGP-418	1.0	$18^{\prime \prime}$	240^{\prime}	340^{\prime}	375^{\prime}	430^{\prime}

Performance Table	
Flow Rate	$.53 / 1.06 \mathrm{GPH}$
Coefficient of Variation (Cv)	$\leq 5 \%$
Flow Exponent (x)	0.05
Inside Diameter	$0.620^{\prime \prime}$
Outside Diameter	$0.710^{\prime \prime}$
Wall	$0.045^{\prime \prime}$
Operating pressure (P)	$15-60 \mathrm{psi}$
Minimum filtration requirement	120 Mesh
Hazen-Williams C factor	140
Barb loss factor (Kd)	.98

Manifold - End Feed Layout

PVC Polycthylene tubing or dripline supply hesder

"Quick" Layout

Curved (Edge) Layout

Designing Drip Irrigation Systems

The 7 Step Approach

Step 1

Calculate Peak Water Requirement

What are we irrigating?

Calculating Plant Water Requirements

$\square \mathrm{WR}=\mathrm{ETo} \times \mathrm{Kc}$
\square Where:

- ETo = Evapotranspiration, Peak Month

■ Kc = Plant Coefficient

- WR = Plant Water Requirement

Calculating Peak Water Requirements

\square Use Reference Evapotranspiration (ETo)
\square Defined as the plant water requirement of a cool season grass growing 4" tall under well watered conditions
\square Can be calculated using weather data

- Temperature, Relative Humidity, Solar Radiation \& Wind Speed
- Methods with use solar radiation are the most accurate

Calculating Peak Water Requirements

\square Use Reference Evapotranspiration (ETo)
\square Defined as the plant water requirement of a cool season grass growing 4" tall under well watered conditions
\square Can be calculated using weather data

- Temperature, Relative Humidity, Solar Radiation \& Wind Speed
- Methods with use solar radiation are the most accurate

Evapotranspiration Sources

\square TexasET Network

- http://TexasET.tamu.edu
- 34 Weather Stations in Texas
\square Contains historical data for 19 Cities in Texas
\square Online Calculators to determine irrigation runtimes
\square Can Sign Up or email irrigation recommendations

TexasET Network

\square Historical ET Data available

Average Monthly ETo (PET) (inches/month)													
City	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Abilene	2.08	2.57	4.14	5.48	6.47	7.65	8.36	7.46	5.48	4.21	2.67	2.08	58.65
Amarillo	1.84	2.27	3.73	5.06	5.89	7.51	8.08	7.29	5.61	4.05	2.4	1.78	55.51
Austin	2.27	2.72	4.34	5.27	6.39	7.15	7.22	7.25	5.57	4.38	2.74	2.21	57.51
Brownsville	2.65	3.03	4.48	5.17	6.03	6.32	6.68	6.65	5.21	4.34	3.01	2.59	56.16
College Station	2.2	2.71	4.22	5.2	6.25	6.89	7.1	6.85	5.6	4.3	2.8	2.2	56.32
Corpus Christi	2.42	2.95	4.28	5.17	5.95	6.43	6.68	6.65	5.21	4.34	3.01	2.59	55.68
Dallas/Ft. Worth	2.0	2.46	3.96	5.14	6.21	7.06	7.40	7.25	5.49	4.19	2.59	2.10	55.85

Plant Coefficients

\square Warm Season Turf $=0.6$
\square Cool Season Turf $=0.8$
\square Sports Turf $=0.8$
\square Frequent Water Plants $=0.8$
\square Flowers
\square Occasional Water Plants $=0.5$
\square Groundcover, tender vines, small shrubs
\square Natural Rainfall Plants $=0.3$
\square Large shrubs, Non Fruit Trees

Example Problem: Step 1

\square Design a drip irrigation system for a St Augustine Grass growing in Austin
$\square \mathrm{WR}=$ Eto xKc
\square ETo $=$ Peak ETo For Austin 7.25 inches (August)
$\square \mathrm{Kc}=0.6$
$\square W R=7.25$ inches $\times 0.6$
$\square W R=4.35$ inches, Peak Use in August

Example Problem: Step 1

\square Peak Water Use $=4.35$ inches per month
\square Irrigation is scheduled on a weekly basis
\square When designing a system you want to be able to deliver daily peak use within 24 hours
$\square 4.35$ inches peak month $=.14$ inches per day

Simplified Method

Plant Type	Typical Peak Daily Waiter Requirement (Texas)	
Warm Season Turf		.17 inches
Cool Season Turf	.23 inches	
Annual Flowers	.23 inches	
Perennial Flowers, Groundcovers, Tender Woody Shrubs \& Vines	.15 inches	
Tough Woody Shrubs, Vines, Trees (non- fruit bearing)		.10 inches

Choose a Product

Choosing a Product

\square Choosing a product from one of the major manufacturers is highly recommended
\square Irrigators typically have a particular brand they prefer to work with in most cases
\square Can use manufacturers performance data such as Coefficient of Variation (Cv) to choose quality products

Choosing a Product

\square Products such as "soaker hoses" typically don't publish or show Cv data
\square Soaker hoses are typically very inconsistent in their application of water for managing plant water usage
$\square \mathrm{Cr}$ values closest to Zero perform best

Example Problem: Step 2

\square For Example Purposes lets use Rainbird Drip Product 12" Spacing, . 6 GPH Flow

Inlet Pressure psi	XF Dripline Maximum Lateral Lengths (Feet)					
	12" Spacing		18"Spacing		24"Spacing	
	Nominal Flow (GPH)		Nominal Flow (GPH)		Nominal Flow (GPH)	
	0.6	0.9	0.6	0.9	0.6	0.9
15	255	194	357	273	448	343
20	291	220	408	313	514	394
30	350	266	494	378	622	478
40	396	302	560	428	705	541
50	434	333	614	470	775	594

Step 3

Calculate the amount of product needed. Length of tubing or number of emitters

Step 3: Calculating the Amount of Product

\square Turf Area is between a sidewalk and a road 50 ft
\square Product can be installed either in a "snaked" pattern or in a manifold
\square Manifold systems are preferred, creates a looped system

Step 3: Product Layout

50 ft

\square Using a 12"product.......come 6" off the edge

- 4" By State Rule Minimum
\square Total Product $=5$ lines $\times 49 \mathrm{ft}+2$ lines $\times 4 \mathrm{ft}$
\square Total Product $=253 \mathrm{ft}$

Example Drip Grid Layout

Step 4

Calculate the total flow of the design

Step 4: Calculate Total Flow

XF-SDI Dripline Flow (per 100 feet)

Emitter Spacing	0.6 GPH Emitter		$\mathbf{0 . 9} \mathrm{GPH}$ Emitter	
$12^{\prime \prime}$	61.0 GPH	1.02 GPM	92.0 GPH	1.53 GPM
$18^{\prime \prime}$	41.0 GPH	0.68 GPM	61.0 GPH	1.02 GPM
$24^{\prime \prime}$	31.0 GPH	0.51 GPM	46.0 GPH	0.77 GPM

$\square 253 \mathrm{ft} \times 61 \mathrm{GPH} / 100 \mathrm{ft}=154.33 \mathrm{GPH}$ or
$\square 253 \mathrm{ft} \times 1.02 \mathrm{GPM} / 100 \mathrm{ft}=2.58$ GPM

Velocity Limit Pipe Sizing Maximum PVC Mainline Flow Rates*

Pipe Size and Type

Maximum Flow Rate

 At $5 \mathrm{ft} / \mathrm{s}$1/2" Schedule 40 PVC 4.7 gpm
3/4" Schedule 40 PVC 8.3 gpm
1" Schedule 40 PVC 13.5 gpm
1-1/4" Schedule 40 PVC 23.4 gpm
1-1/2" Schedule 40 PVC 31.8 gpm
2" Class 315 PVC 50.2 gpm
2-1/2" Class 315 PVC 73.5 gpm
3" Class 315 PVC 109 gpm
-If other pipe types are used, maximum flow rates determined by appropriate velocity for pipe type.

Step 5

Spec out additional drip system components from manufacturers literature

Step 5: Design Components

\square What is the pressure requirement? Regulator?
$\square 8.5-60 \mathrm{PSI}$
\square Are multiple stations/zones required?
\square No
\square What size filter is needed?

- 120 Mesh filter

XF Dripline Maximum Lateral Lengths (Feet)

	XF Dripline Maximum Lateral Lengths (Feet)					
	$12^{\prime \prime}$ Spacing	18" Spacing	24" Spacing			
Inlet Pressure psi	Nominal Flow (GPH)	Nominal Flow (GPH)		Nominal Flow (GPH)		
	0.6	0.9	0.6	0.9	0.6	0.9
	255	194	357	273	448	343
30	291	220	408	313	514	394
40	350	266	494	378	622	478
50	396	302	560	428	705	541
	434	333	614	470	775	594

OPERATING RANGE

- Pressure: 8.5 to 60 psi (,58 to 4,14 bar)
- Flow rates: 0.6 and 0.9 gph
(2,3 l/hr and 3,5 l/hr)
- Temperature:

Water: Up to $100^{\circ} \mathrm{F}\left(37,8^{\circ} \mathrm{C}\right)$
Ambient: Up to $125^{\circ} \mathrm{F}\left(51,7^{\circ} \mathrm{C}\right)$
Required Filtration: 120 mesh

Step 6

Calculate Precipitation Rate

Step 6: Precipitation Rate

$$
P R=\underline{96.25 \times G P M}
$$

A
PR - Station Precipitation Rate, in/hr
96.25 - Constant Converts GPM to inches per hour

GPM - Total Flow Rate through the station
A - Area of Coverage, ft^{2}

Precipitation Rate

PR $=$ 231.1 x Dripper Flow Rate

Dripline Row Spacing \times Dripper Spacing
$\square \mathrm{PR}=$ Station Precipitation Rate, in/hr
$\square 231.1=$ Constant Converts GPH to in/hr
\square Dripper Flow Rate, GPH
\square Dripline Row Spacing, inches
\square Dripper Spacing, inches

Example Problem

$P R=\underline{96.25 \times G P M}$

Area
\square GPM $=$ Total Flow $=2.58$ GPM
\square Area $=$ Length \times Width $=50 \mathrm{ft} \times 5 \mathrm{ft}=250 \mathrm{ft}^{2}$

$$
\begin{gathered}
P R=\frac{96.25 \times 2.58 \mathrm{GPM}}{250 \mathrm{ft}^{2}} \\
\mathrm{PR}=.99 \mathrm{inches} / \mathrm{hr}
\end{gathered}
$$

Will the design work?

Step 7: Will design work?

\square Can Precipitation Rate meet peak demand?
\square Peak Demand Water Req. $=.14$ inches per day
$\square \mathrm{PR}=.99$ inches per hour

$$
\begin{gathered}
\text { Runtime }=\frac{\text { Water Requirement }}{\text { Precipitation Rate }} \\
\text { Runtime }=\frac{.14}{.99}=.14 \text { hour }=8.5 \mathrm{~min}=9 \mathrm{~min}
\end{gathered}
$$

What about shrubs? And_other beddino materiole

Bed Irrigation: Grid or No Grid?

Goal in Drip Irrigation should be to only apply the water where its needed

Often referred to as "Point Source" Irrigation

Designing Drip with Online Emitters (Shrubs)

Designing Drip For Shrubs Using Online Emitters

\square Using Online emitters for shrubs allows for customization of the drip system to match the layout and spacing of the shrubs
\square Always best to use professional judgment on what size emitter (flow) and the number of emitters per shrub plant (typically 1 or 2)

Example: Shrub Drip Design

8 Small Shrubs

Example: Shrub Drip Design

\square Step 1

\square What are we irrigating?

- Small Shrubs
\square What is the peak water requirement?
- Typical Water requirement for (small) tender woody shrubs
$=.15$ inches per day

Plant Type	Typical Peak Daily Waiter Requirement (Texas)	
Warm Season Turf		.17 inches
Cool Season Turf	.23 inches	
Annual Flowers	.23 inches	
Perennial Flowers, Groundcovers, Tender Woody Shrubs \& Vines	.15 inches	
Tough Woody Shrubs, Vines, Trees (non-fruit bearing)	.10 inches	

Example: Shrub Drip Design

- Step 2 Pick A Product........... 1 GPH Emitter

NonStop Drip Emitters

Nominal Performance
All NonStop Drip Emitters nominal flow rates at 20 PSI (1.38 bars)

Emitter	Pressure (PSI)				
Nominal Flow	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$
$\mathbf{0 . 6}$	0.4	0.5	0.6	0.7	0.8
$\mathbf{1 . 0}$	0.7	0.8	1.0	1.2	1.3
$\mathbf{2 . 0}$	1.3	1.7	2.0	2.3	2.7

Emitter flows in GPH, nominal at 20 PSI

Notes:

Manufacturer $\%$ s variation, Cv: $<=0.05$
30-mesh filtration and 15 PSI emitter operating pressure are the recommended minimums for a NonStop emitter system.

- SB-06 $0.6 \mathrm{GPH}(2.3 \mathrm{LPH})$ (Green Insert)*
- SB-10 1.0 GPH (3.8 LPH) (Blue Insert)*
- SB-20 2.0 GPH (7.6 LPH) (Red Insert)*
*Nominal flow at 20 PSI (1.38 bars)

Example: Shrub Drip Design

\square Step 3: How many emitters are needed?

Example: Shrub Drip Design

\square Step 4: What is the total flow?

$\square 8$ Plant x 2 Emitters per Plant $=16$ Emitters
$\square 16$ Emitters x 1 GPH per emitter $=16$ GPH or . 27 GPM

Example: Shrub Drip Design

\square Step 5 : Design Components
\square What is the pressure requirement?

- 20 PSI
\square Are multiple stations/zones required?
■ No, only . 27 GPM
\square What size filter is needed?
- 30 Mesh minimum

Design Specs: Bowsmith Emitter

NonStop Drip Emitters

Nominal Performance

All NonStop Drip Emitters nominal flow rates at 20 PSI (1.38 bars)

Emitter Nominal Flow	Pressure (PSI)				
	$\mathbf{1 0}$	$\mathbf{1 5}$	20	25	30
	0.4	0.5	0.6	0.7	0.8
$\mathbf{1 . 0}$	0.7	0.8	1.0	1.2	1.3
$\mathbf{2 . 0}$	1.3	1.7	2.0	2.3	2.7

Emitter flows in GPH, nominal at 20 PSI

Notes:

Manufacturer $\boldsymbol{\theta}_{\mathrm{s}}$ variation, Cv: <= 0.05
30-mesh filtration and 15 PSI emitter operating pressure are the recommended minimums for a NonStop emitter system.

"SB" Series

Single barb outlet. 0.250 " and $0.175^{\prime \prime}$ barbs on opposite ends; either can be used as inlet.

- SB-06 0.6 GPH (2.3 LPH) (Green Insert)*
- SB-10 1.0 GPH (3.8 LPH) (Blue Insert)*
- SB-20 2.0 GPH (7.6 LPH) (Red Insert)*
*Nominal flow at 20 PSI (1.38 bars)

Example: Shrub Drip Design

\square Step 6: What is the Precipitation Rate

$$
\text { Precip. } \text { Rate }=\frac{96.25 \times \text { Total Flow }(G P M)}{\text { Area }\left(f t^{2}\right)}
$$

Total Flow $=.27$ GPM
Area $=$? ? ?

Calculating Drip Area: Shrubs

Calculating Drip Area: Shrubs

\square Using Area $=$ Length \times Width

$4 \mathrm{ft} \times 2 \mathrm{ft}=8 \mathrm{ft}^{2}$ per plant

Total Area $=8 \mathrm{ft}^{2} \times 8$ plants $=64 \mathrm{ft}^{2}$

Example: Shrub Drip Design

\square Step 6: What is the Precipitation Rate

$$
\text { Precip. } \text { Rate }=\frac{96.25 \times \text { Total Flow }(G P M)}{\text { Area }\left(f t^{2}\right)}
$$

Total Flow $=.27$ GPM
Area $=64 \mathrm{ft}^{2}$

Calculating Precipitation Rate

$$
\text { Precip. } \text { Rate }=\frac{96.25 \times .27 G P M}{64 f t^{2}}
$$

Precipitation Rate $=0.41$ Inches per Hour

Example: Shrub Drip Design

\square Step 7: Will it work?
\square Can Precip. Rate meet peak demand (. 15 Inches)?

Runtime $=\frac{\text { Peak Demand }}{\text { Precip.Rate }}=\frac{.15 \text { inches }}{.41 \frac{i n}{h r}}$

Runtime $=.37$ hours or 22 minutes

Adjusting Drip For Trees

Adjusting For Trees - Layout

Not Recommended
There is no additional water for the tree. The drip line is close to the trunk and the tree roots will probably push the buried drip line up to the surface.

Adjusting For Trees - Layout

Acceptable?
Although the tree and turfgrass are on the same zone, the buried drip line should be placed far enough away from the trunk so that tree roots do not push the drip line to the surface

Adjusting For Trees - Layout

Recommended?

The tree is on a separate zone and there is full separation between the tree and the turf grass

Micro Irrigation

Micro Irrigation

\square Non drip tubing or tape with embedded emitters
\square Focus' on:
\square Microspray devices
\square Point source emitters

Micro Spray Irrigation

\square Is a cross between spray irrigation and drip irrigation
\square Low operating pressure

- 15-30 PSI
\square Low volume
-5-25 GPH

Micro Spray Irrigation

\square Typically create a larger wetted area then drip tubing

- 12-60 inches

Micro Spray Irrigation - Literature

Solo-Drip Performance Data

	Pressure (PSI)	Flow (GPH)	Diameter of Throw (FT)
Adjustable to	15.0	0-11	0-1.5
Maximum	20.0	0-12.5	0-1.9
(approx 20 clicks)	30.0	0-15.7	0-2.7

Trio-Spray Performance Data					
	Pressure (PSI)	Flow (GPH)	SPRAY PATTERN		
			Diameter of Throw (FT)	Radius of Throw (FT)	
			$360^{\circ} \mathrm{X} 18$ Hole	180°	90°
, 尔	10.0	0-16.7	0-17.3	0-7.2	0-5.7
	15.0	0-20.3	0-18.9	0-8.2	0-7.0
- - 7	20.0	0-23.4	0-20.4	0-9.1	0-8.1
	25.0	0-26.1	0-21.8	0-9.9	0-9.0
Base Outlet Size	30.0	0-28.6	0-23.1	0-10.6	0-9.9

Performance Data*

							30°
$\begin{gathered} \text { MODEL } \\ \text { (nominal nozzle } \\ \text { dilameter) } \end{gathered}$	Flitration Requirements mesh (MItcrons)	PRES (bar)	Flow (gph)	Dla (ft$)$	PRES (bar)	Flow ($/ \mathrm{h}$)	Dla (m)
$\begin{gathered} \text { SP12-340 } \\ \text { Blue } \\ \text { (0.99mm/0.039) } \end{gathered}$	(105)	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 11.6 \\ & 12.9 \\ & 14.1 \\ & 15.3 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 45.0 \\ & 53.0 \\ & 58.0 \\ & 65.0 \end{aligned}$	5.6 6.0 6.4 6.6 6.8
$\begin{gathered} \text { SP16-340 } \\ \text { Green } \\ \text { (1.21mm/0.048') } \end{gathered}$	$\begin{gathered} 120 \\ (125) \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 15.1 \\ & 17.4 \\ & 19.4 \\ & 21.2 \\ & 22.8 \\ & 24.2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 57.0 \\ & 67.0 \\ & 80.2 \\ & 86.3 \\ & 95.0 \end{aligned}$	6.0 6.6 7.0 7.2 7.2
$\begin{gathered} \text { SP24-340 } \\ \text { Red } \\ \text { (1.45mm/0.057) } \end{gathered}$	$\begin{gathered} 100 \\ (150) \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 20.9 \\ & 24.1 \\ & 26.9 \\ & 29.3 \\ & 31.4 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 21 \\ & 23 \\ & 24 \\ & 24 \\ & 25 \\ & 25 \end{aligned}$	1.0 1.5 2.0 2.5 3.0	$\begin{aligned} & 79.0 \\ & 95.0 \\ & 110.0 \\ & 118.0 \\ & 130.0 \end{aligned}$	6.4 7.0 7.4 7.6 7.8
$\begin{gathered} \text { SP30-340 } \\ \text { Orange } \\ \text { (1.73mm0.068) } \end{gathered}$	$\begin{gathered} 80 \\ (180) \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 28.9 \\ & 33.4 \\ & 37.2 \\ & 40.5 \\ & 43.3 \\ & 45.8 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \\ & 26 \\ & 26 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 110.0 \\ & 129.0 \\ & 153.0 \\ & 164.0 \\ & 180.0 \end{aligned}$	7.0 7.6 8.0 8.2 8.4

Micro Spray Irrigation - Literature

[^0]
Micro Irrigation

\square Micro Irrigation often uses micro-tubing, referred to as "spaghetti hose" (about $1 / 4$ " tubing) to connect water supply to various emitters.

Allows flexibility in emitter placement throughout the landscape area

Micro Irrigation

Converting Sprinklers to Drip

\square Manufacturers make "quick" conversion devices
\square State regulations do not allow mixed sprinklers on the same valve
\square Non matched precipitation rates

Drip Conversion Kit-Micro

Drip Conversion Kit - Tubing

\square Conversion kits usually replace and existing sprinkler with a drip adaptor
\square Example of Kit

- Spray body contains filter and pressure regulator
- Can also contain fittings for connection to drip tubing

Clogging Control

Chemigation

Chemigation

General term that includes:
\square Fertigation
\square Insectigation
\square Fungigation
\square Nematigation

Advantages of Chemigation

\square Uniformity of application
\square Precise application
\square Economics
\square Timeliness
\square Reduced soil compaction and crop damage
\square Operator safety

Disadvantages of Chemigation

\square High management
\square Additional equipment
\square Must calculate injection rates and volumes

Chemigation and Regulations

\square General Classes
\square Controlled Substances

- Pesticides and Herbicides
- Fertilizers and Nutrients
- Drip Maintenance/Clogging Control Chemicals
- Chlorine and Acids

Controlled Substances

\square Pesticides and Herbicides
\square Highly regulated by the EPA and States (TCEQ)
\square Regulations cover labeling, mixing/injection, and equipment
\square Regulations designed to protect the environment, human health and water supplies

The US EPA's Label Improvement Program (LIP)

\square Established in the 1980's
\square Fully implemented in 1988
\square States were required to implement regulations at least as stringent as proposed by the EPA
\square Labels must state whether product is approved to be applied through the irrigation system
\square Application instructions are provided
\square Requires use of specific safety equipment and devices designed to prevent accidental spills

Chlorine

\square Injected to control biological clogging of lines and emitters
\square Household bleach is often used in small systems (5.25\% chlorine)
$\square 5 \mathrm{ppm}$ solutions commonly used
\square Higher concentrations (up to 100 ppm) if iron bacteria and/or organic matter are problems

Chlorine

\square Chlorine concentration at the end of the drip line should be:

- 1 to 2 ppm for occasional treatment
- 0.5 to 1 ppm for continuous treatment
\square Begin with a low concentration (5 ppm to 10 ppm) for one hour

Acid Injection

Acid is injected to control mineral clogging of emitters
\square Water with a high $\mathrm{pH}(>7.5)$ or
"moderate" to "hard water" (>60 ppm Ca) more likely to cause problems

Acid Injection

$\square 98 \%$ sulfuric acid is commonly used in drip irrigation
\square Citric acid or vinegar can be used in organic farming
\square Titration can be used to determine concentration of acid need
(adding acid to a sample of the water to see how much is required to lower pH)

Acid Injection

\square Experimentation is used in absence of titration
\square Acid is injected until pH is lowered to 6.5 (measured at end of drip line)
\square Higher concentrations are added if needed, lowering pH to as low as ~ 4
\square Acid is corrosive - inject downsteam of filter if made of metal

Common Reasons for Drip Failure

Drip Mistakes

\square Failure to calculate drip precipitation rates

- Irrigate too much
- Often assume really long runtimes are needed because it is drip
\square Don't irrigate enough

Drip Mistakes

\square Soaker Hoses?
\square Poor Uniformity
\square No Performance Data

Drip in El Paso

Drip Mistakes - Failure to Maintain

\square Drip Failure in a Parking Lot

Drip Failure - Drip Under New Sod

\square Drip Running Too Long after new Sod Install

Drip Mistakes

\square Don't know how to layout the product
\square How to layout product for trees?

- Double loop works well, ensures plenty of water in establishing trees
- Inner loop can be removed as the base grows

Drip Mistakes

\square Don't know how to layout the product
\square Important to try to maintain consistency in spacing
\square Stake down product if necessary
\square Manifold and/or loop the system

Installing Drip With Mulch

\square Will the drip be on top, inside or under the mulch?
\square Moisture can build up in mulch.......wood is absorbent
\square Allow long enough runtimes for water to reach the soil and root zone
\square Recommend installing drip first then covering with mulch, can allow for an opportunity to test coverage

Drip Mistakes

\square Poor spacing selection based on soil type
\square Avoid wide spaced emitters and laterals in heavy soil types

Other Mistakes

\square Exceeding Maximum Length of run
\square Avoid "Snaking" a product though a bedded area
\square Manifold or Loop product for increased performance
\square No Filtration
\square No Pressure Regulation
\square Improper zoning
\square Irrigating different "hydro-zones" with one drip zone

Websites

\square Irrigation Technology Center

- http://itc.tamu.edu
\square School of Irrigation
a http://irrigation.tamu.edu
\square TexasET Network
- http://texaset.tamu.edu

Any Questions??

[^0]: Recommended Filtration (Mesh, Microns): QN-05 (200, 74), QN-08 (170, 93), QN-12 (150, 105), QN-14 (130, 118), QN-17 (120, 125), QN-24 (100, 150), QN-33 (80, 180)

