Agenda

- Current and Future Water Projections
- Projected Rise in Energy Cost
- Review of Irrigation System Hydraulics
- Determining Peak Water Requirements
- Solar Powered Pumping Plants
- Wind Mill Pumping Plants
- Limitations of Renewable Energy

2

4

5

Historic Water Use Summary

6

8

Water Planning in Texas

9

10

12

13

14

17

Projected Water Supply/Demand and Population Region G - Brazos

Projected Water Supply/Demand and Population Region E - Far West Texas (El Paso)

20

21

23

22

24

25

26

28

29

30

*Note due to the number of Public Water Systems currently reporting restrictions, TCEQ no longer produces a map but maintains a weekly updated list on their website at https://www.tceq.texas.gov/drinkingwater/trot/droughtw.html

Why Use renewable Energy?????
Solar and Wind Power

37

39

Average Retail Price of Electricitv

Average retail price of electricity, United States, monthly
cents per kilowatthour
${ }_{20}$

38

U.s. utility-scale electricity generation by source, amount, and share of total in 2022^{1} Data as of October 2023			
Energy source	Bullon kWn	Share of total	
Total -all sources	${ }_{4}^{4231}$		
Fossil tuels (total)	2.553	60.4\%	
Natural gas	1.687	39.9\%	
coal	832	197\%	
Petroleum (tota)	${ }^{23}$	0.5\%	
Petroleum liquids	16	0.4\%	
Petroleum coke	7	0.2\%	
other gases?	12	0.3\%	
Nuclear	772	182\%	
Renewables (total)	901	213\%	
Wha	434	103\%	
Hytrooperer	255	6.0\%	
Solar (fota)	144	3.4\%	
Photovolaic	141	3.3\%	
Solar thermal	3	0.1\%	
Biomass (tata)	52	1.2\%	
Wood	35	0.8\%	
Lanatull gas	9	0.2\%	
Municipal solid waste (biogenic)	${ }^{6}$	0.1\%	
Other biomass waste	2	20.1\%	
Geothermal	16	0.4\%	
Pumpee storage hydropowert	-6	-0.1\%	
Other sources ${ }^{\text {b }}$	${ }^{11}$	0.3\%	40

40

41

42

What is Peak Water Demand?

- The maximum amount of water that is needed by a plant during peak use.
- Important for planning pumping needs
- Estimated based on evapotranspiration for plants.

Evapotranspiration, ET

- Measurement of the total water requirements of plants and crops
- The word evapotranspiration is a combination of the words "evaporation" and "transpiration"
- Very difficult to measure directly
- May be calculated using weather data

Reference Evapotranspiration, ETo

- Alfalfa was the first reference crop used
- A cool season grass is now the standard reference plant
- The reference cool season grass is similar to a fescue, except that it is growing under ideal conditions

ET Theory and Current Practice

- Penman 1949 first proposed the "energy balance method" for determining plant water requirements
- This method required daily or hourly weather data: solar radiation, temperature, wind, and relative humidity
- ET is calculated for a single plant/crop which is used as a reference for determining the water requirements of all other plants/crop

Reference Evapotranspiration, ETo

- Also called "Potential ET (PET)"
- Used as a reference from which the water requirements of all other plants can be determined
- Note: ETo = PET
- ETo is the potential evapotranspiration (PET) of a cool season reference grass growing 4-inches tall under well watered conditions

Reference Evapotranspiration, ETo

- ETo for Central/North Texas usually peaks in July between 0.24 and 0.28 inches per day
- Panhandle: peak ETo $=0.33-0.36 \mathrm{in} /$ day
- West Texas: peak ETo $=0.5-0.6 \mathrm{in} /$ day
- Gulf Coast: peak ETo $=0.23-0.26$ in/day

May also be calculated based on historical monthly ETo data

Crop Coefficient (Kc)

- Crop coefficients (Kc) are used to relate ETo to the water requirements of specific plants and crops
- Represents a percentage of plant water use of ETo
- Sometimes referred to as the plant coefficient, turf coefficient, etc.

Crop Coefficient (Kc)

Kc varies depending on the type of plant/crop and growth stage
Kc may also be adjusted for such factors as:
\square Plant density
\square Desired plant quality
\square Level of allowable stress
\square Site conditions
\square Micro-climates
\square etc.

Turf Coefficient, Tc

Plant Water Requirement (WR)

- A factor used to relate ETo to the actual water use by a specific type of turf
- WR = ETo xKc , or
- Reflects the percentage of ETo that a specific turf
- WR = ETo x Tc, or
- WR = PET \times Kc, or
- WR = PET x Tc
- WR, ETo, and PET may be in in/day, in/week, or in/mo

Turf Coefficients	
Warm Season	0.6
Cool Season	0.8
Sports Turf	0.8

53
54

Water Requirements

- Once $\mathrm{ETo}_{\text {Daily }}$ is known we can calculate peak plant water requirements.
$\mathrm{ETo}_{\text {Daily }}=0.23 \mathrm{in} /$ day
$\mathrm{Kc}=0.6$ (warm season grass)
$\mathrm{ETo}_{\text {Daily }}=\mathrm{ETo}_{\text {monthly }} /$ \# of days in month
$\mathrm{ETo}_{\text {Daily }}=7.1 \mathrm{in} /$ month $/ 31$ days
$\mathrm{ETo}_{\text {Daily }}=0.23 \mathrm{in} /$ day
$E T_{\text {Peak Daily }}=E T o_{\text {Daily }} \times \mathrm{Kc}$
$\mathrm{ET}_{\text {Peak Daily }}=0.23 \mathrm{in} /$ day $\times 0.6$
$E T_{\text {Peak Daily }}=0.14 \mathrm{in} /$ day

Water Requirements

Example 2: What are the daily and weekly peak water requirements (ET) for warm season turf in El Paso, Texas?
$\mathrm{ETo}_{\text {Daily }}=0.38$ inches/day

Daily
$\mathrm{ET}_{\text {Peak Daily }}=\mathrm{ETo}_{\text {Daily }} \times \mathrm{Kc}$
$E T_{\text {Peak Daily }}=0.38 \mathrm{in} /$ day $\times 0.6$
$E T_{\text {Peak Daily }}=0.23 \mathrm{in} /$ day

57

Storage and Pumping Capacity

- Many irrigation systems, such as gravity fed, requires on-site water storage
- Pumps may not be able to operate "on-demand"
- Ex. Need sun or wind?
- Most pumping plants are designed to supply peak daily water requirements
- Calculating Irrigation Volumes requires knowing irrigated area
- acres, square feet, etc.

Calculating Weekly Water Requirement

- Irrigation scheduling is usually done on a weekly basis.
- It may be necessary to determine weekly water requirements
$E T_{\text {Peak Weekly }}=E T_{\text {Peak Daily }} \times 7$ days/week

58

Determining Irrigated Area

- Best to calculate area in square feet, ft^{2}
$\begin{array}{ll}\text { - Area of a Circle: } & \text { or } \\ \text { - Area of a Triangle: } & A=\pi r^{2}\end{array} A=\frac{\pi d^{2}}{4}$

$$
A=\frac{\text { length } \times \text { width }}{2}
$$

$$
A=\text { length } \times \text { width }
$$

61

Calculating Storage

- In situations where irrigation water maybe stored onsite, storage volume must be calculated.
- Harvested Rainwater
- AC Condensate
- Other Recycled/Reclaimed Sources
- Storage volume is based on peak plant water demand and irrigated area

Irrigated Area - Example Problems

Example Problem
For a row width of 1 ft and row length of 400 ft , what is the irrigated area?
$1.0 \mathrm{ft} \times 400 \mathrm{ft}=400 \mathrm{ft}^{2}$

62
62

Calculating Storage - Feet
$V=D^{*} \times \mathrm{A} \times 7.48$

Where:
V = Storage volume, gallons
$D=$ Peak plant water demand, ft^{*}
A $=$ Area, ft^{2}
$7.48=$ Constant, converts ft^{3} to gallons
*Need to convert inches to feet

Calculating Storage - Inches
$V=D \times A \times 0.623$

Storage Example

- A turf zone is $30 \mathrm{ft} \times 60 \mathrm{ft}$ and has a peak demand of $0.25 \mathrm{in} /$ day. What is the minimum storage volume needed?
- Step 1: Determine Irrigated Area
- Area $=$ Length \times Width
- Area $=30 \mathrm{ft} \times 60 \mathrm{ft}$
- Area $=1800 \mathrm{ft}^{2}$

A = Area, ft^{2}
0.623 = Constant, converts to gallons

65

Storage Example (continued)

- Step 2: Calculate Daily Storage Volume
- $\mathrm{V}=\mathrm{D} \times \mathrm{A} \times 7.48$
- Where:
- $\mathrm{D}=0.25$ inches $\div 12$ inches $/ f$ foot $=0.02 \mathrm{ft}$
- A $=1800 \mathrm{ft}^{2}$
- $\mathrm{V}=0.02 \mathrm{ft}^{\times 1800 \mathrm{ft}^{2} \times 7.48}$
- $V=269.3$ gallons

Storage Example (continued)

- Step 3: Calculate Total Storage Volume
- Irrigation is usually scheduled on a weekly basis:
- V= 269.3 gallons/day
- $\mathrm{V}=296.3 \mathrm{gpd} \mathrm{x} 7$ days
- Total Volume $=2074.1$ gallons per week

69

Irrigation System Runtime

- Precipitation Rate - defines how fast an irrigation system applies water (in inches per hour)

71

Irrigation System Runtime

Example: A drip irrigation system has a precipitation rate of $0.50 \mathrm{in} / \mathrm{hr}$. How long must the irrigation system operate to apply a peak water requirement of $I .57 \mathrm{in} /$ week?

$$
R T=\frac{W R}{P R}
$$

$R T=1.57 / 0.50$
RT $=3.14$ hours or 189 minutes

73

What type of pump is needed?

- Pump Options:
- Centrifugal
- Most Common in Landscape Irrigation
- Often referred to as a "Booster Pump"
- Submersible
- Turbine
- Not typically used for landscape irrigation
- Why use a specific pump?

Steps to Pump Selection

1. What type of pump is needed?

What are the power sources available?
What is the preference on power source?
What is the flow requirement?
Will a water storage tank or pond be used?
Will the pump provide water for a pressurized irrigation system?
What is the diameter of the pipeline to be connected to the pump?

74

Common Irrigation Pumps

- 3 Most Common Types of Pumps used in Irrigation
- Centrifugal
- Submersible

76

Pump Selection

Pump Selection - Pump Curves

- Any manufactured pump should have a pump performance curve
- Often performance is graphed but may also be listed as a table
- Reading a pump curve requires irrigation system hydraulics
knowledge:
- Required Pumping Head
- Feet of Head or PS
- Required Flow Rate
- Gallons/Minute or Gallons/Hour

78

Understanding Pump Charts:
Table Example
Pump Performance Chart

Model Number	Phase	HP		Capacity - U.S. Gallons Per Minute Discharge Pressure (PSI)									Shut oft ressur PSI	Suctio Pipe Tap	Discharge Pipe Tap
LP075B	1	3/4	1.5	56	48	42	37	29	21			4	41	$2^{\prime \prime}$	1-1/2"
LP100B	1	1	1.5	58	53	48	43	38	832	23	11	148	8	$2^{\prime \prime}$	1-1/2"
$\underline{L P 150 B}$	1	1-1/2	2	78	77	71	70	62	25	43	330	047	47	$2^{\prime \prime}$	1-1/2"
LP200B	1	2	2	86	84	81	77	71	162	52	240		50	$2^{\prime \prime}$	1-1/2"
LP300B	1	3	2	102	101	101	97	91	185	76	62		53	$2^{\prime \prime}$	1-1/2"
LP075B	3	3/4	2	56	48	42	37	29	21				41	$2^{\prime \prime}$	1-1/2"
LP100B	3	1	2	58	53	48	43	38	832	23	311	148	48	$2^{\prime \prime}$	1-1/2"
LP150B	3	1-1/2	2	78	77	71	70	62	25	43	30	347	47	$2^{\prime \prime}$	1-1/2"
LP200B	3	2	2	86	84	84	77	71	162	52	40	0	50	$2^{\prime \prime}$	1-1/2"
LP3008	3	3	2	102	101	101	97	91	185	576	68	8 \|63	5	$2{ }^{\prime \prime}$	1-1/2"

What are the power sources available?

- Power Options
- Electricity
- Diesel
- Gasoline
-Solar or Wind?
- Is the power option reliable/dependable?
- What is the expected peak flow rate needed?
- Peak Crop Consumptive Use?
- Is the power option economical?
- Can the well/water source provide this flow rate?

82

Will the pump provide water for a pressurized irrigation system?

- What type of pressurized system?
- Sprinkler
- High Pressure
- Drip
- Low Pressure
- What is the systems pressure requirement?

What is the Pressure/Head Requirement?

- Suction Head
- For Centrifugal Pump Only:
- Elevation change from the pump inlet to the pump
- Pumping Head
- For all Pump:
- Elevation change from Pump to Delivery Point
- Includes friction loss
- Operating Head
- Also referred to as the operating pressure of a pressurized irrigation system such as sprinklers or drip

85

Pumping Depth vs Head

- Elevation Change from Water to the Surface

Suction Head

- Is limited based on the size of the centrifugal pump

- Rule of Thumb

- Maximum of Elevation Change of 6-15 feet
- Friction Loss
in Pipe

86

Operating Head

- Usually based on the operating requirement of a sprinkler or drip emitter
- Refer to Manufacturers Specification Literature for requirements
- Maybe listed as PSI

Typical Pressures and Flows for Sprinkler Irrigation			
Sprinkler Type Radius of Throw Pressure Ranges Spray 5 to 16 ft. Flow Ranges Small Rotors 15 to 30 psi ft. Up to 4 gpm Medium Rotors 30 to 50 ft 25 to 55 psi 65 psi Large Rotors $50 \mathrm{ft}+$. 50 to 120 psi Guns to 6 gpm 10 to $40+\mathrm{gpm}$ $100 \mathrm{ft}+$. 100 psi + $80 \mathrm{gpm}+$			

89

What is the Pressure/Head Requirement?

- Need Total Dynamic Head to complete pump selection
- Total Dynamic Head
- Pumping Depth + Operating Head+ Elevation

Changes + Friction losses

Typical Pressures and Flows for Drip Irrigation

Drip Type	Pressure Ranges	Flow Ranges
On-line Drip Emitters	10 to 50 psi	0.5 to 24 gph
Inline Drip Emitters	10 to 50 psi	0.4 to 0.9 gph
Mini sprays/ Spitters	10 to 50 psi	0 to 30 gph
Drip Tape	8 to 20 psi	10 to 60 gph per 100 ft of tape

90

What is the diameter of the pipeline to be connected to the pump?

- Will the pipeline be large enough for the flow requirement?
- Will there be excessive friction loss?
- Use larger pipe to minimize friction loss?
- Remember not to exceed $5 \mathrm{ft} / \mathrm{s}$ velocity

93

95

Renewable Energy Systems

- Typically refer to Solar and Wind Powered Systems
- Offer opportunities to utilize non potable water sources for irrigation
- Example: Harvested Rainwater
- *Note* Purple Pipe use with non potable water

94

96

Electricity Review

- Electricity is the flow (movement) of electrons through a material.
- All materials in nature are made of atoms, nature's building blocks. Atoms consist of protons, neutrons, and electrons.
- The inner part of the atom
(nucleus) contains
protons and neutrons.
- Electrons orbit the nucleus.

97

Electricity Review

- The unlike charges between a positively charged proton and a negatively charged electron produce an attractive force that holds the electron in orbit around the nucleus.
- When electrons move from one atom to another, electricity flow has occurred.

Electricity Review

- Protons and electrons have physical "charges".
- Protons = Positive charge

Electrons = Negative charge

- These "charges" act similar to the magnetic poles of a m

Types of Electricity

- There are two types of electricity
- Direct Current (DC)
- Electrons flow in only one direction
- Alternating Current (AC)
- Electrons periodically cycle their direction of flow. The electrons move first in one direction and then move back in the opposite direction.

Terminology: Voltage

- Voltage (V) is the electrical force that pushes the electrons from atom to atom through a material
- Scientifically represented by symbol "E"
- Voltage in a wire is analogous to water pressure in a piping system

101

Terminology: Resistance

- Measured in ohms, defines how loosely or tightly a material holds on to its electrons.
- Low resistance = Good conductor
- High resistance = Bad conductor
- Scientific Symbol is "R"
- Resistance in a wire is analogous to friction loss in a piping system.

Terminology: Current

- Measured in amps, current is the rate of flow of electrons through a material
- Scientific symbol is " I "
- Current in a wire is analogous to flow rate (gpm) in a piping system

102

Terminology: Watt

- Electrical power is a measure of the rate of work and electric current or device can accomplish
- Manufacturers indicate how much electrical power an appliance consumes in units of watts (Scientific symbol "P").
- Sometimes referred to as "volt-amps" or "VA" (common for solenoid valves)

105

107

Wire

- Wire generally comprised of conductors and insulators
- Conductors are materials made up of atoms which readily allow electrons to be transferred from atom to atom
- Insulators are materials made up of atoms with electrons tightly bound to the nucleus preventing the flow of electricity

106

108

109

Solar Power

- Solar power is the conversion of sunlight (solar energy) into electricity (DC current)
- Solar energy can be captured by either using:

Photovoltaic's (PV)

- System of solar cells that convert sunlight into electric current
- Concentrated Solar Power (CSP)
- System of lenses or mirrors that focus a large area of sunlight into a small beam

Solar Powered Pumping Plants
Solar Power

110

Photovoltaic Cells

- Also known as Solar Panels or Solar Cells
- Made of special semiconductors such as silicon

112

How Solar Panels Work

- When light is absorbed into the semiconductor, the energy knocks electrons loose, allowing them to flow freely.
- The electric field that acts to force electrons free causes a current to flow in a certain direction.
- By placing metal contacts on the top and bottom of the cell we can draw the current off for external use.

113

Solar Distribution Across Texas

115

Solar Distribution Across the US

114

Types of Solar Energy (Radiation)

- 2 Types of Solar Energy
- Direct Radiation
- Energy that avoids atmospheric scattering and arrives at the earth's surface in an unbroken line
- Diffused Radiation
- Energy that is deflected by cloud cover, humidity, pollution and dust.
- Cannot be effectively focused and generally not useful for power conversion

117

Average Direct Solar Hours in Texas

- East Texas
- 4.5 Sunny Hours Per Day
- Beaumont, Houston, Corpus Christi
- East Central Texas
- 4.8-5.5 Sunny Hours Per Day
- Dallas, Austin, San Antonio, Harlingen
- West Central Texas
- 5.8-6.2 Sunny Hours Per Day
- Childress, Abilene, San Angelo
- West Texas
- 6.3-6.8 Sunny Hours Per Day
- Amarillo, Lubbock, Midland, Fort Stockton

Global Radiation

- Insolation is the total amount of solar radiation that strikes a particular location over a given time period, typically a day

118

Solar Powered Pumping Plants
Systems Components

Components of Solar Pumping Systems
Components of Solar Pumping Systems

- PV Array (solar panels)
- Motor
- Pump
- Controller
- Power cable
- Batteries (if applicable)
- Storage tank (if applicable)
- Accessories
- Dry well probe sensor
- Pressure switches

122

Wiring Solar Panels

- Solar panels must be wired to meet the power demand of the selected pump/motor configuration
- Sized according to output wattage
- 3 Wiring Options
- Series
- Parallel
- Series-Parallel
- Newer "higher efficiency" panels are
available in 200-300W

Series Wiring Diagram

- If wired in series, total the watts \& volts from each panel
- Example:

Each Panel is $175 \mathrm{~W}-24 \mathrm{~V}$

- In Series, Add the Watts and Volts
- Total Output is 700W-96V

125

Series-Parallel Wiring Diagram

- If wired series-parallel, total the watts of all panels but only total volts for one set of parallels
- Example:

Each Panel is $175 \mathrm{~W}-24 \mathrm{~V}$

- Series/Parallel, Add all Watts and only add the number of Parallels
- Total Output is $1400 \mathrm{~W}-48 \mathrm{~V}$

Parallel Wiring Diagram

- If wired in parallel, total watts but volts remain the same
- Example:

Each Panel is $175 \mathrm{~W}-24 \mathrm{~V}$

- In Parallel, Add Watts not Volts
- Total Output is $700 \mathrm{~W}-24 \mathrm{~V}$

126

Panel Wiring

- When designing your solar panel wiring diagram, panels may be oversized to provide extra watts but should not provide extra volts
- Ex: If $1200 \mathrm{~W}-48 \mathrm{~V}$ is needed, you may provide $1400 \mathrm{~W}-48 \mathrm{~V}$ but not 1400W-72V
- Increasing watts will allow for earlier start time and longer operating time

129

Controller (Control Units)

- Allow for management of the pumping systems
- Contain ports/controls to be used with:
- Time based irrigation controllers
- Dry Well Probe/Water Level Probe
- Motor speed adjustments
- Batteries

131

Pump

- 2 Types of Pumps
- Submersible
- Set under water either vertically
or horizontally
- Typically has a high pumping capacity
- Surface (Booster)
- Typically used to increase pressure
- Connected to an existing water
supply above ground

130

Power Cables

- Cables size and length is based upon power requirement
- Most manufacturers will have charts to help determine size and max length

Example Wire Sizing Table

Example Wire/Panel Chart

Wire Sizing Table (Controller to Motor)			
	MAX FEET	System	Watts
	Wire Size AWG		
17	$\# 14$	150W	300W
33	$\# 10$	$\# 14$	$\# 14$
50	$\# 10$	$\# 10$	$\# 10$
65	$\# 10$	$\# 10$	$\# 10$
80	$\# 10$	$\# 10$	$\# 10$

Cable is sized for maximum 6% voltage loss

Note: max. cable length in feet, uses a max. 3% voltage drop
Note. max. cable ength in feet, Uses a max. 3% volta
Max. cable length between CU200 and SQF $=650 \mathrm{ft}$.
SQ Flex is most efficient at 120 V and above. Grundfos recommends combining panels to produce 120
or above
134

Batteries

Battery Backup System

137

139

Systems Accessories

- Irrigation Controllers
- Irrigation Controllers can be connected to solar pumping systems to allow for use defined pumping
- Connects to controller just like a master valve or pump relay
- Solar Powered Irrigation

$|$| 1 | |
| :---: | :---: |
| 1 | 0 |

$-$
${ }^{138}$
138

Solar Powered Pumping Plants
Designing Pumping Systems

Example Problem

Example Problem

- Given: Rainwater is harvested from a commercial building roof in Austin. When full, the storage tank holds 1000 gallons and is used for irrigating flowers beds. The irrigation zone applies 2.5 GPM at 10 PSI.
- Most pumps are sized by Pumping Head
- Feet (Ft) or Meters (M)
- First Determine Pumping Head
- $10 \mathrm{PSI}=$? ft
- $10 \mathrm{PSI} \times 2.31 \mathrm{Ft} / \mathrm{PSI}$
- 10 PSI $=23.1$ feet of head (vertical lift)
- Required: Design the solar pumping plant.

142

Reading Manufacturers Specs-Pumps

- Sometimes Manufacturers Use Pump Curves
- Follow Curve for Head to needed Flow Rate

Total Lift		P5150800st 60			PS150 B00st 125			PS150 Boost 24		
Feet	Meters	Lh	us-6/			us-6/h	Wats	Lh	Us-6/h	
17	5	260	69	35	475	125	50	900	238	65
33	10	257	${ }^{68}$	40	470	124	55	895	235	90
50	15	254	67	45	470	124	62	890	235	105
65	20	252	67	55	469	124	70	880	232	120
83	25	250	66	63	460	122	80	875	231	135
100	30	248	66	72	450	- 119	90	870	230	150
132	40	246	65	80	448	118	105	865	229	200
150	45	244	64	85	447	118	112	860	227	225
165	50	242	64	90	446	118	120			
200	60	240	63	95	425	5112	140			
231	70	239	63	110	419	${ }^{111}$	160			
265	80	238	63	125	409	- 108	185			
300	90	236	62	140	407	108	200			
330	100	234	62	165						
400	120	228	60	185						

Example Problem

- Manufacturers specs report flow in gallons per hour, will need to convert to flow.
- Irrigation System = 2.5 GPM

$$
\text { - } 2.5 \text { GPM }=150 \text { GPH }
$$

- Revisit chart to determine model pump needed and total Watts - Need 23.1 Ft \& 150 GPH

145

Example Problem

- What solar panel configuration is needed (90 Watts)?
- 1-90W-12V Panel in Series or greater

147

Example Problem

- Select Model and Watts
- Need 23.1ft and 150 GPH
- PS150 BOOST 240, 90W

 Feet Meters L / h US $-6 / \mathrm{h}$ watts L / h US-G/h watts L / h US-G/h watts | 17 | 5 | 260 | 69 | 35 | 475 | 125 | 50 | 900 | 238 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

33	10	257	68	40	470	124	55	895	236	90

| 50 | 15 | 254 | 67 | 45 | 470 | 124 | 62 | 890 | 235 | 105 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

65	25	250	66	63	460	122	80	875
83	231	135						

83	25	250	66	63	460	122	80	875	231	135
100	30	248	66	72	450	119	90	870	230	150

132	40	246	65	80	448	118	105	865
229	200							

$\begin{array}{llllllllllll}132 & 40 & 246 & 6 & 80 & 448 & 118 & 105 & 865 & 229 & 200 \\ 150 & 45 & 244 & 64 & 85 & 447 & 118 & 112 & 860 & 227 & 225\end{array}$

150	45	244	64	85	447	118	112
165	50	242	64	90	446	118	120

65	50	242	64	90	446	118
60	120					
60	240			42	12	

200	60	240	63	95	425	112

231	70	239	63	110	419	111

300	90	236	62	140	407	108	205

100	120	228	60	185

460	140	222	59	220

146

Designing Solar Pumping Systems

- Most manufacturers \& dealers have pump design software
- Software requires
- Required pumping head or pressure
- Desired flow rate
- Location (solar reference for panel needs)
- Software/dealer will assemble a pump package with the correct pump and solar array

149

151

History of WindMills

- The first American water windmill was designed by David Halladay in 1854.
- Very popular during the Mid-Late 1800's as settlers moved west.

150

Reality Check

- The wind does not blow all the time
- Wind may only blow a few hours a day
- Wind pumps require a minimum wind speed of 7 mph to operate
- Crops require large amounts of water
- The deeper the well, the less water a wind pump will produce
- Water storage tanks are expensive

153

Wind Speed Classification

- Light Winds: 7-9 mph
- causes movement of small branches and leaves
- Fair Winds: 10-16 mph
- raises dust, blows litter on the ground
- Strong Winds: 17-24 mph
- causes small trees to sway
- Above 25 mph

Most windmills have an automatic regulation system that turns the wind wheel out of the wind in strong winds and storms

Wind Speed Units and
Conversion Factors

	m / s	$\mathrm{km} / \mathrm{hr}$	mph	knots
$1 \mathrm{~m} / \mathrm{s}$	1.000	3.600	2.337	1.994
$1 \mathrm{~km} / \mathrm{hr}$	0.278	1.000	0.622	0.540
1 mph	0.447	1.609	1.000	0.869
1 knot	0.514	1.853	1.151	1.000

154

Wind Pumping Components

- Wind pumps may be purchased from certain manufacturers as a complete package that includes
- The wind mill (Mast/Blades)
- Gear box
- Pump rod
- Tower/Structure
- Pump

156

157

159

Wind Mill Head

- Head Includes:
- Basic Motor
- Vane
- Tail Assembly
- Furl Brake Kit
- Mast Complete
- Wheel Complete
- 702 Model Head

158

Cylinders

160

WindMill Pumping Video

https://youtu.be/3AA8s3Jtetg?si=dD3qywCiZ4s5iG4c

161

- Wind pumps may also be set-up to use surface water such as ponds, canals, rivers, etc.
- Appropriate regulatory authority should be contacted prior to withdrawing water from these sources
- River Authority, Corp of Engineers, etc.

- This illustration shows a wind pump set-up
- The power source (wind mill)
- Pump
- Storage tank
- Pipe line

162

- The wind pump is designed to lift the water into the storage tank
- The storage tank is constructed at the proper height to provide sufficient head (pressure) to operate the irrigation system

Manufacturers Specification Sheets

- The size of the wind mill is based on the diameter of the wind wheel and the cylinder (well) diameter
The pumping rate (gph) and the total elevation that the water can be lifted is listed for each:
- wind wheel and cylinder diameter
- average wind speed range

165

Portion of the Iron Man Wind Pump Specification
Sheet
for 6 M (20 ft) Wind Wheel

Elevation Feet - Meters	LIGHT WINDS		FAIR WINDS		STRONG WINDS	
	Cylinder Diameter Inches - MM	Water Pumped per Hour Gallons - Cu M	$\begin{gathered} \text { Cylinder } \\ \text { Diameter } \\ \text { Inches - MM } \end{gathered}$	Water Pumped per Hour Gallons - Cu M	Cylinder Inches - MM	Water Pumped per Hour Gallons - Cu M
10-3	16-400	7470-28.3	18-460	13860-52.5	18-460	18900-71.6
16 -5	14-350	5700-21.6	16-400	10960-41.5	16-400	14915-56.5
23-7	12-300	4200-15.9	14-350	8370-31.7	14-350	11432-43.3
33 -10	10-250	2900-11	12-300	6150-23.3	14-350	11432-43.3
50-15	8-200	1875-7.1	10-250	4277-16.2	12-300	8236-31.8
66-20	7-180	1505-5.7	8-200	2745-10.4	10-250	5834-22.1
100-30	6-150	1055-4	7-180	2218-8.4	8-200	3722-14.1
130-40	5-130	790-3	6-150	1530-5.8	7-180	3088-11.5
165-50	43/4-120	660-2.5	5-130	1162-4.4	6-150	2112-8

167

167

Pumping Elevation

- Pumping elevation includes the depth to the water and height of the storage tank

166

Example Problem

Under "Fair Winds", how much water will a 6 M Iron Man pump for an elevation of 50 ft?
4277 gallons per hour
How much water will the be pumped in $\mathbf{2}$ hours?
8554 gallons

Portion of the Iron Man Wind Pump Specification
Sheet
for $6 \mathrm{M}(20 \mathrm{ft})$ Wind Wheel

Elevation Feet - Meters	LIGHT WINDS		FAIR WINDS		STRONG WINDS	
	Cylinder Diameter Inches - MM	Water Pumped per Hour Gallons - Cu M	Cylinder Inches - MM	Water Pumped per Hour Gallons - Cu M	Cylinder Diameter Inches $-M M$	Water Pumped per Hour Gallons - Cu M
10-3	16-400	7470-28.3	18-460	13860-52.5	18-460	18900-71.6
16 -5	14-350	5700-21.6	16-400	10960-41.5	16-400	14915-56.5
23-7	12-300	4200-15.9	14-350	8370-31.7	14-350	11432-43.3
33-10	10-250	2900-11	12-300	6150-23.3	14-350	11432-43.3
50-15	8-200	1875-7.1	10-250	4277-16.2	12-300	8236-31.8
66-20	7-180	1505-5.7	8-200	2745-10.4	10-250	5834-22.1
100-30	6-150	1055-4	7-180	2218-8.4	8-200	3722-14.1
130-40	5-130	790-3	6-150	1530-5.8	7-180	3088-11.5
165-50	43/4-120	660-2.5	5-130	1162-4.4	6 - 150	2112-8

169

Example Problem:
Design a Wind pump - Drip Tape System
Select a wind pump and design the water storage tank for the following:

- A Garden
- 20 rows, each row 1 ft wide and 20 ft long
- Deep rooted vegetable with a peak water use of $.25 \mathrm{in} /$ day
- Wind pump
- An Iron Man 6 m wind wheel
- "Light Wind" conditions
- Depth to the water table: 50 ft
- Drip System
- Drip Product: . 5 GPM/100ft, 12 inch emitter spacing, in-let pressure of 8 PSI
- Main Line: 100 ft of 1 "PVC Class 200

Example Problem

What size of water storage tank will I need to hold 8554 gal?

$8554 \mathrm{gal} \div 7.48 \mathrm{gal} / \mathrm{ft}^{3}=1144 \mathrm{ft}^{3}$

- Step 1: Calculate peak daily water use
- $400 \mathrm{ft}^{2} \times(.25 \mathrm{in} / 12 \mathrm{in}) \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=52.3$ Gallons
- Note: this is the minimum capacity of the water storage tank
- Step 2: Calculate total flow rate of drip tape
- total length of drip tape:

GPM

170

- Step 3: Determine the total head needed for the irrigation system
- in-let pressure: 8 PSI = 18.5 Feet of Head
- friction loss in main line: Using Chart C2 for 1 inch pipe and $2 \mathrm{gpm} \rightarrow .07 \mathrm{psi}=$.03 ft
- Add at least 10% for losses through fittings/valves $\boldsymbol{\rightarrow} 0.1$
- minimum head required to operate irrigation system: $18.5 \mathrm{ft}+0.03 \mathrm{ft}+0.1 \mathrm{ft}=18.63 \mathrm{ft}$
- Step 4: Determine minimum height of water storage tank
- 18.63 ft to the bottom of tank
- Based on the availability of materials/tank sizes, determine the height of the tank (bottom of tank to the top of tank)
- Note that the minimum storage volume of the tank must be 52.3 Gallons

173

- Step 5: Calculate total pumping elevation
- depth to water table $=50 \mathrm{ft}$
- minimum height of bottom of tank $=18.63 \mathrm{ft}$
- height of tank $=4 \mathrm{ft}$ (assumption)

Total pumping elevation: $50+18.63+4=72.63 \mathrm{ft}$

- Step 6: Select Wind pump from Iron Man chart (Light Winds, 72ft head)
- A cylinder of with a diameter of 6 inch will meets our requirements. Pumping rate under light winds will be about 1055 GPH

- Step 7: Calculate the minimum numbers of hours the pump will need to operate to supply the irrigation water requirement

The peak irrigation water requirement is 52.3 gallons/day
Pumping rate is 1055 gallons/hr
time to fill tank $\boldsymbol{\rightarrow} 52.3$ gallons $\div 1055 \mathrm{gal} / \mathrm{hr}$ $=.05$ hours $=3$ minutes

177

179

IF not, then you will need more wind pumps or need to reduce the size of your irrigation system!

- Step 8: Reality Check

Do you have wind enough wind during the peak water use period?

178

Wind Turbines

- Wind Turbines use wind power to produce electricity
- Combines basic principles previous discussed for wind and solar
- Can offer flexibility by providing AC or DC Power

180

181

183

Wind Turbine Power Output

Wind turbine power outpout

 Instantaneous speed

182

184

Solar Systems

- Advantages

- Favorable Weather
- Pump consistently all year
- Portability
- can be portable to move
- Lifetime
- Around 20 years
- Maintenance
- Limited Maintenance

185

Solar Systems

- Disadvantages

- Stormy Weather
- Panels can be damaged by hail
- Cloudy Weather and short days reduce energy
- Lightening Strike damage if not properly grounded
- Cost
- Batteries are expensive and only last about 5 years

187

186

188

Reality Check

- Wind Solar pumping systems are going to be most feasible for low flow/low pressure irrigation systems such as Drip Irrigation.
- Renewable systems offer the "Green" solution to water conservation practices such as rainwater harvesting.

189

