

Efficient Irrigation System Design

L

WHAT IS DESIGN??

Agenda

- TCEQ Rules for Design
- Zoning Principles
- Basic Pressure Concepts
- Pressure Regulation
- Comparison of Spray Vs. Rotors
- Drip Irrigation
- Piping System & Components
- Tools and Software

2

TCEQ Definition: Design

- The act of determining the various elements of a landscape irrigation system that will include, but not limited to, elements such as:
 - Collecting site specific information
 - Defining the scope of the project
 - Defining plant watering needs
 - Selecting and layout out emission devices
 - Locating system components
 - Conducing hydraulics calculations
 - Identifying any local regulatory requirements
 - Scheduling irrigation work at a site

Overview

Irrigation Designs

- Physical Design
 - TCEQ/Municipal Rules Tell Us What is Needed
- Implementation and Thought Process Behind The Design
 - Producing the Best Design Possible

"Only as Efficient as the person behind the design, installation and management"

5

Review of Irrigation System Plan (Design) Requirements

- Irrigators Seal, Signature and Date of signing
- All physical feature and boundaries to watered
- North Arrow
- Legend
- Zone Flow Measurement
- · Controller & Sensor
- · Water Source & Backflow
- Emission Devices (Sprinklers, Drip, Bubblers, Etc.)
- Valves: Isolation, Zone & Master Valve
- · Mainline & Lateral Piping
- Scale
- Design Pressure

6

7

| PROJECT: Integration CAD Course August 19, 2015 | Shart Description: | Company Name Address (1235 Gr. 1236 Gr

13 14

15 16

| PROJECT: Imagelian CAD Course August 19, 2015 | Sheet Description: | Company Name Actions 17.44 Shoulds had been provided by the course of t

18

17

19 20

Minimum Standards for the Design of the Irrigation Plan

- Defined by TCEQ Chapter 344.61
- Local Ordinances may have more stringent standards
 - All Cities over 20,000 must have irrigation ordinances
 - Contact water provider or municipality for a copy

21

Minimum Design and Installation Requirements

- Defined by TCEQ Chapter 344.62
 - No irrigation design or installation shall require the use of any component, including the water meter, in a way which exceeds the manufacturers published performance limitations for the component
 - Be familiar with manufacturers product literature

22

Minimum Design and Installation Requirements

- Spacing
 - Must not exceed manufacturers published radius or spacing of a device
 - No above ground spray devices in areas less than 48 inches
 - · Many ordinances exceed this
 - Some areas may be exempt if the runoff drains into a landscaped area

23

48 Inch Rule, 5+ ft Rule?

Example: the landscape between roads and sidewalks

25

Minimum Design and Installation Requirements

- Irrigation Zones
 - Irrigation system shall have separate zones based on:
 - Plant Material Type
 - Microclimate Factors
 - Topographic Features
 - Soil Conditions
 - Hydrological requirements
 - Often referred to as "hydrozones"

Minimum Design and Installation Requirements

- Water Pressure
 - Must operate at the minimum and not above the maximum based on the nozzle and spacing used
- Piping
 - Designed not to exceed 5 ft/s for PVC pipe

26

Minimum Design and Installation Requirements

- Matched Precipitation Rate
 - Zones must be designed so all devices in the zone irrigate at the same precipitation rate

Minimum Design and Installation Requirements

- Overspray
 - Cannot spray over surfaces made of :
 - Concrete
 - Asphalt
 - Brick
 - Wood
 - Stone set in mortar
 - Or any other impervious material (walls, fences, sidewalks, streets, ect....)

ZONING

30

29

ZONE VS STATION

Zoning

- Zone (regulations refer to as HYDROZONING) defines:
 - Plant water needs
 - Soil characteristics
 - Seasonal growth response
 - Maintenance requirements
 - Exposure to sun
 - Size & Shape of landscape

How many zones?

Station

- A station is defined by
 - Available Flow (GPM)
 - Available Pressure (PSI)
 - Application device
 - Spray, rotor, drip, ect?

33

Zoning

- Poor designs will often have multiple zones located within a station
 - Example
 - Irrigating Shrubs, flowers and turf on the same zone
 - Often results in something being over or under watered

34

Zoning

- Characteristics of a poorly zoned landscape:
 - Impractical turf areas
 - Impractical shrub or tree plantings

35

Poor Zoning

Poor Zoning

37

Irrigation Of Hardscapes

• Shall not spray water over surfaces made of concrete, asphalt, brick, wood, stone set in motor or any other impervious material

38

Zoning – Plant Material

- Often established plants (non-turf) can be zoned into one of 3 categories
 - Frequent Watering
 - Annual Flowers
 - Occasional Watering
 - Perennial Flowers, groundcovers, tender woody shrubs and vines
 - Natural Rainfall
 - Tough woody shrubs and vines, shade trees

39 40

Site Plans

- Site plans can be useful tools for starting the design process
 - Property CAD / Survey
 - Aerial Photos
 - Ex. Google Earth
 - City Sites
- May be limiting if installing irrigation system prior to landscape design/plant selection
 - Ex. Designing irrigation for builder at new home site.

Fig. 18. SBY OC 24. N 98.90', nd 80 18. 80

Fig. 18. SBY OC 24. N 98.90', nd 80 18. 80

Fig. 18. SBY OC 24. N 98.90', nd 80 18. 80

Fig. 18. SBY OC 24. N 98.90', nd 80 18. 80

Fig. 18. SBY OC 26. SB

Sources: Examples of where to get Orthophotos and GIS Data

- Internet Search Engines Google it!
 - http://maps.google.com/
- City Pages

41

- North Central Texas Council of Governments
 - http://www.nctcog.org/index.asp
 - http://www.dfwmaps.com/
- City of Austin
 - http://map.mapnetwork.com/destination/austin/

Sources: Where to get Aerial Photography and GIS Data

City Pages

- TAMU http://campusmaps.tamu.edu/
- College Station http://www.cstx.gov/home/index.asp?page=1996
- Dallas/Fort Worth http://www.dfwmaps.com/
- San Antonio http://maps.sanantonio.gov/
- Houston http://pwegis.pwe.ci.houston.tx.us/
- Austin http://www.ci.austin.tx.us/maps.htm

Aerial Photography and GIS Data Links

- TNRIS Texas Natural Resources Information System
 - http://www.tnris.state.tx.us/
- U.S. Census Bureau
 - http://www.census.gov/geo/www/cob/bdy files.h tml
- U.S. Geological Survey

46

45

47 48

Defining Plant Watering Needs

- Seasonal Based Irrigation Schedule
 - A seasonal (spring, summer, fall, winter) watering schedule based on either current/real time evapotranspiration or monthly historical reference evapotranspiration data, monthly effective rainfall estimates, plant landscape coefficient factors and site factors
- TexasET Network
 - http://TexasET.tamu.edu

Landscape Plant Coefficients

For irrigation scheduling, plants may be classified as:

- 1) Frequent watering = 0.8
- 2) Occasional watering = 0.5
- 3) Natural rainfall = 0.3

49

ASABE Standard Landscape Coefficients

Table 1 – Annual average fraction of ET₀ for acceptable appearance of established landscape plants

minute a restage machine of Erester acceptance	
Plant Type	Recommended Plant Factor
Turf, cool season	0.8
Turf, warm season	0.6
Annual flowers	0.8
Woody plants and herbaceous perennials, wet 1)	0.7
Woody plants and herbaceous perennials, dry	0.5
Desert plants	0.3

¹⁰ Tropical plants: for tropical plants with precipitation the majority of months, a plant factor of 0.7 applies. Where monsoonal climates are present, 0.7 applies for the wet season, and 0.5 during the dry season.

50

Landscape Plant Coefficients

- Annual Flowers
 - Grown in a usually formal, high-visibility area for seasonal display of colorful flowers or attractive foliage; often referred to as bedding plants.
- Woody Plants & Herbaceous Perennials
 - Trees, Shrubs, vines, ground cover, and herbaceous perennials adapted to grow in a wet environment (≥ 20 in. of average annual precipitation)
- Desert Plants
 - Plants that can survive a very dry (<10 in. of annual precipitation) environment.

TexasET—Historic ETo Average Monthly ETo (PFT) (inches)Insertion) (inches)Insertion)

53

Scheduling Site Factors

- Schedules may have to be adjusted for various site factors
 - Soil Type effects irrigation frequency
 - Sun/Shade can reduce water requirement
 - Use Adjustment Factors

TexasET-Historic Rainfall

Average Rainfall (inches/month)													
City	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tota
					/			9			1101	000	
Abilene	1.01	1.10	1.19	2.09	3.31	2.90	2.09	2.45	2.75	2.48	1.28		23.6
Amarillo	0.59	0.58	0.93	1.24	2.74	3.40	2.88	2.99	1.89	1.41	0.62		19.8
Austin	2.11	2.41	2.05	3.01	4.38	3.46	2.05	2.23	3.38	3.35	2.28	2.46	33.1
Brownsville	1.33	1.31	0.90	1.63	2.31	2.85	1.69	2.46	4.95	3.36	1.61	1.18	25.5
College Station	2.87	2.88	2.50	3.77	4.73	3.79	2.24	2.43	4.30	3.64	3.07	3.15	39.3
Corpus Christi	1.57	1.88	1.33	2.06	3.09	3.19	1.84	3.33	5.30	3.54	1.56	1.60	30.30
Dallas/Ft. Worth	1.94	2.44	3.12	3.15	5.43	3.18	2.09	2.10	2.42	4.01	2.43	2.50	34.8
Del Rio	0.53	0.91	0.86	1.89	2.39	1.90	1.54	1.72	2.59	1.94	0.85	0.65	17.7
El Paso	0.42	0.41	0.30	0.21	0.33	0.72	1.559	1.48	1.42	0.72	0.35	0.62	8.57
Galveston	3.33	2.58	2.43	2.55	3.46	4.14	3.77	4.23	5.36	3.17	3.32	3.59	41.93
Houston	3.70	2.99	3.48	3.49	5.22	5.13	3.25	3.79	4.45	4.65	3.89	3.64	47.70
Lubbock	0.52	0.61	0.82	1.26	2.62	2.67	2.12	2.07	2.53	1.99	0.62	0.64	18.4
Midland	0.54	0.61	0.47	0.77	2.02	1.59	1.83	1.65	2.04	1.56	0.58	0.53	14.18
Port Arthur	4.86	3.96	3.30	3.86	5.02	5.68	5.31	5.04	5.77	4.20	4.22	5.13	56.34
San Angelo	0.83	1.05	0.93	1.68	2.86	2.20	1.16	1.77	2.78	2.21	0.96	0.78	19.20
San Antonio	1.61	1.90	1.68	2.53	3.99	3.57	1.83	2.58	3.29	3.29	2.11	1.72	30.09
Victoria	2.28	2.12	2.08	2.93	4.95	4.77	3.03	3.08	5.37	3.72	2.51	2.33	39.1
Waco	2.07	2.39	2.51	3.43	4.59	2.80	1.88	1.66	3.07	2.91	2.48	2.49	32.2
Wichita Falls	1.08	1.31	1.91	2.72	4.59	3.36	2.05	2.16	2.94	2.69	1.55	1.56	27.93

54

Site Factors: Adjustment Factor, Af

- A modification to the crop coefficient
- Used to reduce water application for allowable stress

Plant Quality						
Adjustment Factor, Af						
Plant	Af					
Quality						
Maximum	1.0					
High	0.8					
Normal	0.6					
Low	0.5					
Minimum 0.4						

55

Equation for Calculating Water Requirements (WR)

WR = ETo x Kc x Af

➤ Example:

ETo = 1.59 inches (1st week of August 2007 in Dallas)

Kc = 0.6 (warm season turf)

Af = 0.5 ("Low plant quality" adjustment)

 \triangleright WR = 1.59 x 0.6 x 0.5

➤ WR = 0.48 inches (1st week in Aug)

Water Requirements with Rainfall

- Problem: during the 1st week in Aug 2007, Dallas received 0.04 inches of rainfall, what is our total WR (previous example)
- Since the total rainfall is less than 0.1 inches, we use a RAINf = 0
- WR = (ETo x Kc x Af) RAIN_f
- WR = (0.48 inches) 0
- WR = 0.48 inches

57

58

Pressure

- The BIGGEST variable in irrigation systems
- Determines how well sprinklers and drip components perform
- ALL manufacturers publish recommended operating pressures for their products

Slides available for future reference

PRESSURE LECTURE

59

Types of Pressure

- Dynamic Pressure
 - Pressure at a point when water is moving
 - Also referred to as "operating pressure"
- Static Pressure
 - Pressure at a point when there is no water moving

Determining Pressure

• Pressure Gauges (either Static or Dynamic)

61

How is pressure created?

- Weight of the Water (Gravity)
- Mechanical Means (Pump)

62

How do we measure pressure?

- PSI
 - Pounds Per Square Inch
- · Feet of Head
 - Height of Water in a column

63

Relationship between PSI & Feet of Head

- 1 PSI = 2.31 Feet of Head
- 1 Foot of Head = .433 PSI

66

Static Pressure and Elevation

A 50 psi B

- A and B are at same elevation: static pressure at B = A
- C is lower in elevation than B: static pressure at C is higher that at B
- D is at higher elevation than C: static pressure at D is lower than at C

Determining Pressure On Site

- 2 Methods to determining available water pressure on site
 - Contact local water purveyor
 - Measure on site with a pressure gauge
 - Typically at hose bib closest to the meter

69

70

PRESSURE REGULATION

Low Pressure.... High Pressure.....

74

Pressure Regulation

- Landscape Irrigation Systems often face challenges of too high of operating pressure than too low
- For sprinklers to operate efficiently they must operate within their pressure boundaries
 - see manufacturers product literature

75 76

In Line Pressure Regulators

 Both pre-set and adjustable inline pressure regulators are available for use in landscape irrigation system

77

78

Pressure Compensating Sprinklers

- Manufacturers are starting to offer sprinkler bodies with built in pressure regulators
 - Examples: Rainbird PRS Series

Pressure Regulating Valves

• Options are available to control pressure on the control valve

- Example: Hunter Accu Sync

79

Pressure Devices

 Contact your local irrigation equipment supplier for more information on what type of pressure regulating or pressure compensating devices are available.

Slides for reference

PIPING LECTURE

81

Pipe Layouts

- 2 methods for pipe layouts
 - In-Line Method
 - Looped Method
- Decision to Loop or In-Line is typically considered when designing the mainline

83

84

Looped Mainline

- Advantages
 - Pressure Loss is less than using the same size pipe as in an inline system
 - Pressure loss can be held at a desired level using smaller pipe
 - Can result in lower cost with use of smaller pipe
- Disadvantage
 - Uses More Pipe

85

Water Movement in the System

- Flow: amount (volume) of water moving per unit of time. Measured in:
 - ■Gallons per minute (gpm)
 - ■Gallons per hour (gph)
- Velocity: speed of moving water. Measured in:
 - Feet per second (fps)

 Flow in a system is dependent upon the number of sprinklers or drip emitters working at the same time

Flow

- **Flow** in various pipe segments of an irrigation system can be different
- Flow is commonly measured in gpm for sprinkler systems and in gph for drip irrigation systems

87

88

Introduction to Friction Loss (Pressure Loss)

- When water is **not moving** there is **no friction** loss – this is static pressure
- When water is moving there is some loss of pressure due to friction.

What Affects Friction Loss?

- Velocity (flow)
- ●Inside diameter of pipe (ID)
- Roughness of material
- Length of pipe

90

Classifications of Pipe (PVC)

- Schedule Pipe
 - Pipe wall thickness is fairly constant for all diameters
 - Pressure Rating Decreases as Diameter Increases
- Class/SDR Pipe
 - Has a constant pressure rating per class for all diameters of pipe
 - Wall thickness changes with pipe diameter

91

Inside Diameter 15 gpm - 2-in. (2.067 in. Inside Diameter) Sch 40 PVC Velocity 1.43 fps Pressure Loss = 0.19 psi/100 ft. of pipe 15 gpm - 1-in. (1.049 in. Inside Diameter) Sch 40 PVC Velocity 5.56 fps Pressure Loss = 5.08 psi/100 ft. of pipe

Length 100 feet of pipe 10 gpm - 1-in. Sch 40 PVC Pressure Loss = 2.40 psi total 10 gpm - 1-in. Sch 40 PVC 200 feet of pipe Pressure Loss = 4.80 psi total

95 96

How to Find Friction Losses

- Use Formula
 - Hazen-Williams
 - Darcy-Weisbach
 - Manning (mainly used for open channel flow)
 - ■Others
- Use Tables
 - Generally calculated using Hazen-Williams formula

97

To Use Friction Loss Tables:

- Find proper page for pipe material and type. Note all tables are for 100-ft. pipe length.
- Find the flow (gpm)
- Find the size of pipe
- Find the psi loss corresponding to pipe size under psi loss column
- Find the corresponding row for flow

98

Example: Friction Loss Calculation Using the Tables

Find the friction loss in:

- ●100 ft. length of Class 200 PVC pipe
- •Flow is 6 gpm.
- ●Nominal pipe size is ¾ in. diameter

Example: Solution

- ●Use Class 200 PVC table
- ●Length of pipe is 100 ft.
- Step 1: Find 6 gpm in first column
- Step 2: Find ¾ in. pipe diameter column
- Step 3: Read 1.67 psi loss per 100 ft. of pipe

101

Factors Affecting Dynamic Pressure

- Change in elevation
 - ■Same as in static pressure
- Friction loss in various components
 - Loss of pressure as water flows in pipes and other irrigation components
- Others factors
 - velocity head and entrance losses (not covered in this presentation)

Introduction to Dynamic Pressure

- Pressure when water is moving
- Uniformity of the irrigation system is dependent upon the correct dynamic pressure

102

Dynamic Pressure Calculation

- When calculating dynamic pressure, consider:
 - Pressure at the water source
 - ■Changes in elevation
 - Friction losses in irrigation system components

103

Friction Losses for Pipe Fittings

- Separate tables are available for friction losses in fittings
- Sometimes a certain percentage (10% 20%) of pipe friction loss is used to account for fittings friction losses

105

Typical Pressures and Flows for Sprinkler Irrigation

Sprinkler Type	Radius of Throw	Pressure Ranges	Flow Ranges
Spray	5 to 16 ft.	15 to 30 psi	Up to 4 gpm
Small Rotors	15 to 30 ft.	25 to 55 psi	Up to 6 gpm
Medium Rotors	30 to 50 ft	25 to 65 psi	Up to 10 gpm
Large Rotors	50 ft. +	50 to 120 psi	10 to 40+ gpm
Guns	100 ft. +	100 psi +	80 gpm +

Friction Losses for Other System Components

- See tables and charts in manufacturer's catalogs for other components such as valves, filters etc.
- Use a water meter table for finding friction loss through the water meter (if there is one in your system)

106

Typical Pressures and Flows for Drip Irrigation

Drip Type	Pressure Ranges	Flow Ranges
On-line Drip Emitters	10 to 50 psi	0.5 to 24 gph
Inline Drip Emitters	10 to 50 psi	0.4 to 0.9 gph
Mini sprays/ Spitters	10 to 50 psi	0 to 30 gph
Drip Tape	8 to 20 psi	10 to 60 gph per 100 ft. of tape

Design Considerations: Pressure/Flow

Balance each stations design for pressure and flow

Ex. Station 1: Flow = 12 GPM
 Station 2: Flow = 6 GPM
 If Possible balance each station to 9 GPM

 Balancing Pressure and flow can reduce pipe size and reduce friction loss

109

Emission Devices

- Spray Heads
- Rotary Heads
 - Single Stream
 - Multi Stream
- Impacts
- Bubblers
- Microsprays
- Drip

COMPARISON OF EMISSION DEVICES SPRAY VS ROTOR

110

Matched Precipitation Rates

- Zones must be designed so that all devices in that zone irrigate at the same precipitation rate
- Runtime varies per sprinkler method
 - Sprays: 1.0-1.6 in/hr
 - Rotors: 0.25 0.75 in/hr
 - Multi-Stream: 0.37 0.61 in/hr
 - Drip (Turf): 0.20 0.99 in/hr

111 112

Spray Heads

Spray Heads

- Preset spray patterns
 such as 45, 90, 180, 270, 360 degrees
- Have a high precipitation rate
- Work best in smaller areas and areas with tight, curving edges

113

114

Rotary Heads

- Can rotate from 0 to 360 Degrees
- Have a lower precipitation rate than sprays
- Easily adjusted for different flows
- Good for irrigating larger areas
 - Golf courses, sports fields & parks

115

Rotors – Multi Stream

117

Impacts – Common Heads

119 120

Impacts

- Sprinkler which rotates using a weighted or spring loaded arm which is propelled by the water stream and hits the sprinkler body, causing movement
- Usually arc pattern is 40-360 degrees
- Covers large areas
 - -20 150 feet
- Precipitation rate varies considerably
 - -0.1-1.5 inches per hour

Designing Sprinkler Systems

- Design Considerations
 - Triangular vs Square Spacing
 - Wind
 - Looped vs Non Looped Systems

121

Manufactures Spec Sheets

- Manufacturers specification tell us what sprinkler spacing should be based on:
 - Nozzle
 - Arc Pattern
 - Pressure
- Once these have been found, we can identify each sprinklers flow rate and estimated precipitation rate

122

Sprinkler Layout/Spacing

- Sprinkler spacing is typically a function of sprinkler nozzles based on pressure and flow
- Choosing a layout maybe simple for areas with regular geometry (square or rectangular areas)

123

10/7/2021

Spacing

- Most sprinklers and emitters are designed to be used "head to head"
- Which layout shows "head to head" coverage?

A

125

Sprinkler Layout

- Often to achieve good distribution a combination of spacing layouts is needed
 - Square
 - Triangular
 - Fill In
 - Uses no pattern but places sprinklers in areas with poor distribution, usually a result of irregularly shaped areas

126

Square Layouts

- Fairly simple
 - Sprinkler heads are spaced "head to head" (50% radius)
 - Heads are parallel and perpendicular to each other
 - Head to head spacing = line to line spacing

129

Square Layout

130

Triangular Layouts

- Typically more practical in larger areas
- Sprinkler spacing is head to head along the lateral section
- Line to Line (Row) distance is equal to 86.6% of the head spacing
 - Example: Head to head spacing of 35 ft
 Line to Line Distance = 35 ft x .866 = 30.3 ft

Triangular Layouts

 Only basic disadvantage of triangular spacing maintaining uniform coverage along the borders.
 Station 2
 Station 3

133

Designing Around Wind

- Wind distorts sprinkler patterns and can carry off fine sprinkler drops.
- How windy is a concern?
 - 0-3 mph are considered calm
 - 4-7 mph is a light breeze
 - Can feel on your face, causes leaves on trees to rustle
 - 8-12 mph is a gentle breeze
 - Leaves and twigs in constant motion, will extend a flag
 - 15+ mph is Windy!

134

Wind Speed Units and **Conversion Factors**

	m/s	Km/hr	mph	knots
1 m/s	1.000	3.600	2.337	1.994
1 km/hr	0.278	1.000	0.622	0.540
1 mph	0.447	1.609	1.000	0.869
1 knot	0.514	1.853	1.151	1.000

Designing For Wind

- Sprinkler spacing can be decreased to account for windy conditions
- Rules of Thumb:
 - 0-3 mph use 50% spacing (head to head)
 - 4-7 mph use 45% spacing (5% overlap)
 - 8-12 mph use 40% spacing (10% overlap)
 - 12+ mph very difficult to manage wind effects with design
 - Multiple approaches of spacing and low trajectory, low drift nozzles should be used.
 - Consider drip irrigation?

137

138

Sprinkler Distribution in Wind

Square Spacing Wind Distortion

139 140

Triangular Spacing Wind Distortion

141

Drip Irrigation

- Irrigation water is applied through emitters either above or below the soil surface
- Precipitation rates vary with length, pressure and flow.

DESIGNING DRIP IRRIGATION

142

Drip Irrigation (cont.)

- Long history in agricultural applications
- Promoted as an "efficient" alternative to sprinkler irrigation
- In truth:

"Only as efficient as the person behind the design and management"

Drip Products – Drip Tubing With Embedded Emitters

- Durable Thick Wall Tubing
- Usually contain pressure compensating embedded emitters
- Can operate under higher pressures

145

Drip Specification Charts

- Charts typically give the following for each drip tape product:
 - diameter (inch, mm)
 - in-let pressure
 - flow rate

Drip Selection

- Use products from major manufacturers if possible
- Thinner material (wall thickness) and smaller diameters are less expensive
- Thicker products are more durable
- For drip under plastic mulch, the thinner products are typically used

146

Drip Specification Charts

- In-let pressures are listed usually as a range from the minimum to the maximum for each tape product (psi, bar)
- Flow rates are usually given as:
 - GPH/100' (gallons per hour per 100 ft of tape) or
 - GPH per emitter

Maximum Length of Run

- EU (emission uniformity) is a measurement of how evenly water is distributed along the tape
- the longer tape is run, the lower the EU
 - Due to friction loss in the product
- If possible, use row lengths that maintain 90%
 EU

149

Rainbird Example

	XF Dripline Maximum Lateral Lengths (Feet) 12" Spacing 24" Spacing							
Inlet Pressure	Nominal F				Nominal Flow (GPH)			
psi	0.6	0.9	0.6	0.9	0.6	0.9		
15	255	194	357	273	448	343		
20	291	220	408	313	514	394		
30	350	266	494	378	622	478		
40	396	302	560	428	705	541		
50	434	333	614	470	775	594		

XF-SDI Dripline Flow (per 100 feet)								
Emitter Spacing 0.6 GPH Emitter 0.9 GPH Emitter								
12"	61.0 GPH	1.02 GPM	92.0 GPH	1.53 GPM				
18"	41.0 GPH	0.68 GPM	61.0 GPH	1.02 GPM				
24"	31.0 GPH	0.51 GPM	46.0 GPH	0.77 GPM				

Maximum Length of Run

- The maximum distance that the drip tape can be run varies according to
 - diameter
 - in-let pressure
 - flow rate
 - slope (%)

150

Rainbird Example

OPERATING RANGE

- Pressure: 8.5 to 60 psi (,58 to 4,14 bar)
- Flow rates: 0.6 and 0.9 gph (2,3 l/hr and 3,5 l/hr)
- Temperature:

Water: Up to 100°F (37,8° C) Ambient: Up to 125°F (51,7° C)

• Required Filtration: 120 mesh

DRIP LAYOUT OPTIONS

153

154

Other Drip Layouts

• Example: Shrub Drip Design

157

Precipitation Rate

PR = 231.1 x Dripper Flow Rate

Dripline Row Spacing x Dripper Spacing

□PR = Station Precipitation Rate, in/hr

 \square 231.1 = Constant Converts GPH to in/hr

□ Dripper Flow Rate, GPH

□ Dripline Row Spacing, inches

□ Dripper Spacing, inches

Precipitation Rate

 $PR = 96.25 \times GPM$

Α

PR - Station Precipitation Rate, in/hr

96.25 – Constant Converts GPM to inches per hour

GPM – Total Flow Rate through the station

A – Area of Coverage, ft²

158

Example Problem

 $PR = 96.25 \times GPM$

Area

• GPM = Total Flow = 2.58 GPM

• Area = Length x Width = 50ft x 5 ft = 250 ft²

 $PR = 96.25 \times 2.58GPM$

250 ft²

PR = .99 inches / hr

SOFTWARE

161

Review: TCEQ Standards for Designing

- In TCEQ Rules there are 5 primary design considerations that if followed will produce efficient and effective irrigation systems
 - Sprinkler Spacing
 - Pressure
 - Zoning
 - Matched Precipitation Rate
 - Avoid Irrigation of Hardscapes

Software Demonstrations

- Space Pro
- ProContractor Studio

162

Review Design

- State has MINIMUM rules for Landscape Irrigation, however local municipalities may have MORE STRINGENT Rules
 - Know your local regulations!
- Time and costs should not be excuses for poor design practices
- Affordable software packages available for landscape irrigation make it very simple to follow state rules and produce quality irrigation designs